














































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































368 APPENDIX B

The integral in (12) is a finite Fourier transform, the ordinary transform
being pgiven by A = oo, Slepian and Pollack (1961} have shown that the
solutions of (12) are prolate spheroidal wave functions. We are primarily
interested in large Fresnel numbers (Np = a¥/R.A» 1), for which A =
2aNr» 1, and distributions with relatively small beam width. For these, we
can extend the limit of integration in (12) to oo, obtaining the ordinary Fourier
transform. A complete set of functions with rapid radial decrease which have,
themselves (up to a constant) as their pwn Fourier transforms consists of the
Hermite-Gaussian functions of Eq. (1.22). Specifically, we have the integral

L { " X exp(iXX') Hul(X") exp(— X™*[2) = imHm(X) exp(—X2/2), (13)
). e
so that

Frn(X) = Fp(0)Hn(X) exp (—X2(2) (14)
is a solution of (12) for 4 = ecoand ym = im. The lowest three Hermite-
Gaussian functions are plotted in Fig, 1-3,

We can determine the approximate field characteristic within the reflectors

by evatuating the Fourter transforms, using (13) in (10). After some algcbra,
we find

E y, 2) = Eoh(z) Hm(Xh)Hn(YF) exp[— H]

2 2 :

x expl——-:K[ Re+z+ .2_;%32’_2}] + il +m+n (%-— 4;5)_], ¢E)]
where 2(z) = [2RA/(R? + 428172 and tan § = (R, — 22)/(Re + 2z). We see
that the lowest-order eigenfunction {m = » == 0)is just the Gaussian beam
discussed in Probs. 8-10 and 8-11 and depicted in Fig. B-5. This beam is
characterized by the ““Rayleigh length™ zo, which is the distance from the focal
point {z = Q) to the point at which the beam width w, (spot size} is 2 larger
than the value wg for z = 0. For (15), this length is R./2. Furthermore, the

radius of curvature of a constant phase front is given by (Prob. 8-11)

2

R::z+%—." -(16)

Hence, for z = z¢ = R.f2, this radius is the same as the mirror radius, so that
the mirrors coincide with equiphase surfaces.

The eipenfrequencies of the modes are simply calculated from (l 5) by the
requirement that the phase shift between the mirrors (z = — Ref2 to + R.f2)
be an integral multiple (g} of =, that is,

gn = [K,,,,,qm (U +m+n (% - )] — [0}

This wives the eigenfrequency (writing R. = L)
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Figure B-S. Diagram of Gaussian beam with Rayleigi; length parameter 2o, focal-point . (_':3 ’ 1""""‘
waist size wy = + IT0] K. For ease of reading, we have drawn the figtire with wo = 0.5,z20=2, ' ’ ‘
implying a wavelength of i = nwol{z0 == 0.393. In laser resonators, there are verydifferent - ‘ i H
_ values, suchas 20 = 50 cm, A = 10-4 cm, which give wo == 0.5 mm, that is, a beam diameter )
of about | mm. This beam is extremely skinny compared to thot shown. Henceonly atoms near . i||||||[
the 7 axis contribute to amplification in a corresponding laser. Unstable resonators (see Fig. f:) o
B-7) lead 10 muck fatter beams, but feature high losses. ; m :
- I:j. oo .
- o ¢ e
Qnang = Kmne¢ = 7(2g + l_+ m+ ")'jz o)) -
i
J

In particular, the TEMop, mode has Qoo = m(2q + 1)(¢f2L), which differs
- from definition (1) for £2¢ by #{¢/2L). The additional phase shift of m results
from the shift that 2 Gaussian beam encounters in going from z = —zp t0

+ Zo. .
The fractional loss per pass a; is given by

ap = 1 — lo'man]z= 1 - ]Xml’n’z (18)
For the Hermite-Gaussian approximation, this loss vanishes since ym = .
When the prolate spheroidal functions are used, the representative values
given in Fig. B-6 are obtained.

In peneral, a resonator described by this analysis can be formed by placing
reflectors of curvaturc (16) atany pair of phase fronts in Fig. B-5. It can be _
shown (see Siegman (1971), p. 322) that the corresponding beam widths at the 0
reflectors are both finite only if the condition '

L L ;

< —— —_——

ox(i-Hi-& =
is satisfied. Other configurations (see Fig. B-7) have considerably higher loss
and are termed “unstable.” Nevertheless their larger beam size can be a
decided advantage in high-power laser applications since more of the active ;
medium can contribute to amplification. Although the stable cavity laser ! C g
. -
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APPENDIX B
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Figure B-6. Fresmel number versus fractional loxs per ; ifit
pass for confocal cavities and plane
parallel, From Boyd and Gordon (196] ) and Fox and Li (1961), respectively.

Parallet
% plane

N
:Y‘T ] 24 // |

& = ] —-(L/R.)

Figure B-7. Diagram showing resi
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radiation distribution is described reasonable well by the passive cavity results
of this appendix, the unstable cavity distributions depend critically on the
active medium. Hence the unstable cavity laser is still an area of active re-
search.

The multimode laser theories of this book effectively assume that all the
modes have the same trapsverse variations, that is, transverse variatjons are
ignored. This is not accurate, however, for the description of interaction
between, for example. TEMup, and TEMg;, modes since the larger beam size
of the latter leads to contributions from atoms having little effect on the
TEMoo, mode. In the language of Sec. 8-2, the two modes “burn holes™ with |
only partialoverlap. This phenomenon reduces the mode interaction below

_ that predicted by the theories Chaps. 8-10. :
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PLASMA DISPERSION FUNCTION

Appendix C. The Plasma Dispersion Fanction

In this appendix we describe the plasma dispersion function Z(v), defined
equivalently by

Z(0) = iKu | " dr exp[—ut — (Kuf2)22?) 0
|
and
T .
Z(v) = }; f_ ) dv°x§[+£_;§:)]. o)

M Our treatment js oriented toward the gas laser theory of Chap. 10, but the

{unction, as its name suggests, occurs also in plasma physics (see Fried and

Conte, 1961, for a brief description of this use along with much other infor-

mation). In general, the function describes the response of an ensemble of

exponentially decaying systems with Gaussian frequency distribution. As

developed in Prob. 16-4, Z(v) is the Fourier transform of an exponential times

‘W a Gaussian, that is, Eq. (1), or equivalently the convolution of the Fourier

transform of an exponential (complex Lorentzian) times the Fourier trans-

form of the Gaussian (a Gaussian), that js, {2). Both forms follow from the
double integral definition

““ Z(0) = :}_’; fa " dz [ "~ dvexp[—(fu)) exp[— (o + iKY, )

In this appendix we develop some properties of the function, summarize the
results in Table C-1, illustrate the behavior of Z(u) for typical gas laser
parameters in Fig. C-1, and give a formula for numerical evaluation,
A useful relationship for Z(v) is expressed in terms of the error function
W (erf) of complex argument. For this, we define the complex variable

372
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TABLE C-1, Properties of the Plasma Dispersion Function Z{v) . S o
Here the complex number v =2 y + ifew — v).
Definitions -
Z() = iKu ] " dr exp{—or — (Kuj2)1%) ol ol
K =~ exp{—(v/u}T] ' _ Sl
_“I dy v~ Ky : I
= iy expl{o/Ke)?) [} + erf(—ufKu)) - i
=iE (=) YR T e et D
= ',Eaz"(lfu) , Zen = aﬂ-jl—!-, Zgnsl = @n+ ! '|||&:J
g
Limits : i
Zw) == iV, for |vjKu] <€ 1 - ‘ - 1
. X { .
Zo) = exp(—E) iV —2 [ drexp(—xY), &= . for |y/Kul < 1 L
0 : ‘;D .
20 =& for 1okt > 1 h
[} fj L
Properties h '||||||||
[ y y
Z(v*) = —Z*(0) : 2 _ llllllll"‘
@ 2 Z ! A
(U) i \:3
.o [Ku ] .
1 :3 7 K
L=— @) oy ]
and change the vanablc of integration in (1) from t to x = Kuz/2. Then (1) : ~ . |||l|||'
becomes - Hlllln
Z() =2 [ drexp(2ilx — ¥7) BRI
° | : ~ i
=2irdtcxp[4(x-i§)2-izl : R
0 & * i
_ - D
= 2 exp(~(?) | _ ax exp(~x") m
- o iy
= iy7 exp (— B[l + erf (i), ) ]
where erf(i{) is the error function of a complex argument. -3 . ;
A convenient form for numerical evaluation when |o/Ku| < 1is given by ’ ol
(1) with the exponential exp{—or1) expanded in a Taylor series. We find ' i 2 )
o 1 20yn (" J ! 9
. e ] o . -— YO
20)=2 55 {~2) [ drxmexp(eny o -
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AFPFENDIX C

[(2%5? (%)hj: dx x2% exp(—x%)

ZAr+ ity

Z(r+ity

(2,,)” (

n en
%)

22m1p)

T @nx !

(

2
Ku

o,

Lia g

lll'lll

-2
~-1024

=512

o 512 1024

a

Lty

PR A A

—

o
-~1024 512

1] 512 1024

A

@ _I,_ T (-—- %)Z“IJ:.: dx xtn exp(-xz)]

"]

©

F::gur‘e C-1. Plasma dispersion function versus normalized detuning. Curves in order of
decreasing magnitudes are for y = 0, 50, 100, 250, 500, 1024, Ku = JOM,

The first few values of the z, coefficients are zp = 7, 2 = -2, 52=4T1,

Z(U)] lyKw) <1 =i¥m.

z3 = —4f3, 2, = 'z {2, etc.'For values of |v/Ku|> 1, a continued fraction

is generally more convenient (see Fried and Conte, 1961). In particular, we
see from (6} that in the extreme Doppler limit (Ku> o))

™

i
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A less extreme limit, in which only y/Ku < 1, is given in Table C-1. This result
follows from completion of the square in (1) with v == i{@ — v}. In the other
limit for which Kw — 0, the Gaussian in (1) can be dropped, resulting in the
formula

2 Kua0 — I% . €3]
Thus, in particular, out in the wings where @ — v Ku, the function reduces
to a complex Lorentzian. These propertics and others given in Probs.
10-2 through 10-4 are summarized in Table C-1.

In Fig. C-Fgraphs of the real and imaginary parts of Z(v) versus normalized
detening [(e> — v)/Ku] are ziven for several values of p/Ku. The imaginary part
appears to be a combination of a Lorentzian and a Gaussian, which is not
surprising from = convolution of the two functions. For reference, in Fig. C-2
a Lorentzian is plotted with a Gaussian having the same width and area.
It.can be seem that the Lorentzian has reiatively substantial wing areas. -

-,

Figure C-2. Graphs of a Lovenszian and a Gaussian having the same area and full width I
at half maximum. Note the relatively large wing area of the Lorentzion.

Reference

B. D. Fried and S. D. Conte, 1961, The Plasma Dispersion Function ( Hilbert Transform of
the Gaiistian)}, Academic Press, New York.
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GAS LASER PERTURBATION THEORY

Appendix DD, Gas Laser Perturbation Theory

In this appendix we evaluate the first- (10.50), second- (10.52), and third- -
(10.53) order perturbation integrals, using the multimode perturbation energy
(10.8). The results are valid for an arbitrary amount of Doppler broadening
and therefore follow from the more general Zeeman theory by Sargent, Lamb,
and Fork (1967). Unlike the treatment in that work, the titne integrations for
the complex polarization &5t ) of Eq. (10.13) are performed before the velocity
integral, for the calcutation is then both simpler and more generally applicable.
Some discussion of the Doppler limit relative to the exact result is given for
single-mode operation. The Doppler limit coefficients for the amplitude- and
frequency-determining equations (9.18) and (9.19) are summarized in Tables
10-1 and 10-2. Both the general and Doppler limit versions of the coefficients
have been programmed for the computer. )

The zeroth-order contribution to the papulation matrix is given by (10.49).
The first-order contribution (10.50) to the off-diagonal element pep is given by
the rate equation result (10.19) with the population difference paa — pos
replaced by its zero-order value, N(z, v, t). The reasoning involved in the
calculation is the same as that for the rate equation solution itsell. The first-
order contribution io the complex polanrat:on is then given by the rate
equation result (10.28).

We are primanty interested in calculating the third-order contribution to
Pas and 1o Z%(1). Before doing this, however, it is interesting to calculate the
second-order contribution to the population difference, pza'® — pop'®.In
doing so, it is advantageous to use the summation index p for %34 and o for
% ab, fOr then the phase factors have the same form. After nsing ttigonometric
addition formulas for the two products with form Uz’ — »t")Ua (2’ — vr”
— vr"”") and discarding odd functions of v, we find’

376
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(ea® = pus®)Z,.8) = = (2] N L B expliton — 90 ¢ 4+ 5 — 4o

¢ 1
x [ din [ di fexpl—(ivy = ive + 1)1 + exp[= (ive = ive + 1))

x {exp{—(iw — ivs + YT + exp{—(iv, — fw + 7}
x 1 {cos [(K» ~ Ko}z cos (Kvr'"') — cos [(K, + Ko}z cosKve" Ky} (1)

Here we note that the rapidly varying spatial dependence of the rate constant
R, which we neglected in (10.21) is multiplied by cos (2Kvt” + Kvr'”)in the
second-order contribution. Hence, for appreciable values of v, this term tends
to average out in the time integration over v, Note that the last line in (1)
reduces to sin K,z sin Koz for zero velocity, as it should accordi ng to (9.10).

We now solve for the third-order contribution to the complex polarization,
given by (13) as

1 L .
+ T3 = 2p exp(ival + iga) f- dv7‘j; dz Up*{z) pas®(z, ¥, 1).

Substituting the perturbation energy (8) into (53) for pa»™ with subscripts as
indicated in the perturbation tree of Fig. 104, we find

Fr® = } i~ BTN, EuBofo XD (Wnae) 7 [ & NOYUa"(2)

H p o

. - J:_: dv W(P)J: dr’J: dr’” J;_drm exp[lo-i(ca — Vi Vo — ve)t — y7']

X {exp[—i(vp — vo)T" ~ yaT"] + exp[—i(v, — va)1" ~ yo1"]}
- X Uz — vT)
X {exp[—i(@ = vo)T" — yr"] Up*(z — v’ — v
X Us(z — v' — v — v

+ exp{—i(vp — W)t — yr") Us(z — v’ — v1)

X Up*z — vT — vi" — vr")}. Q@ -

The first product of four U’s can be reduced, via trigonometric identities
[see, for example, (9.10) and the following discussion] and neglect of functions
odd in v and rapidly varying in z to :
${oos[(Ku — Ku — Ko + Ko)zJcos [KW(r” — )]
+ cos[(Ka — Ky + Ko — K2)z] cos [Kv(r"! + 1))
+ cos [(Kn + K — K, — Kz)z) cos [Kv(r” + 217 + T)]}. (3)

The second product is given by (3) with the indices g and o interchanged. In
substituting (3) into (2), we replace expressions like cos [Kv(z™ = )] by exp
[—iKv(r" 1 )], as shown in Prob. 10-9. Equation (2) thén reduces to

a
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L P 378 APPENDIX D
| o |
-
: "o FuN1) = 4 oK) EET EEle exp(i¥mum) 3 3 T (4)
i “ po =] w=
| i .
T ) where the third-order integrals
B S i =i arn vttt (e (gt [ g
: - Tho = iNnoKn | f_ _dv exp[—(v/u)) L & L dr’ fo ar
m-""{‘-) o " x exp[—(uir + B KT — (012 + isgeKv)r”
I « 5 — (o3 + isuaKv)z”]. (5)
| "'"; . ‘ Here the factors sy are defined by the matrix
oW | o =101
{ | s 5= 1 6 11, (6)
III! g -, o 1 21 )

the excitation parameters Np, are given in Table D-1, and the complex
frequencies vz are listed in Table D-2. With practice, one can actually write

‘ ‘ﬂl‘“" cipression (5) defining the matrix (6) and Tables D-1 and D-2 by inspection

by e ' : of the perturbation tree in Fig. 10-3, This technique is particularly valuable in

’[' ‘HHH!i"lh' |  . . TABLE D-1. Definitions of the N whick Appear in l‘he Third-Order Integrals { 5) in
>

Terms of N (9.16)

The relation n = p — p + o, satisfied by ngmﬁcwu terms in the omplitude- and frequency~
determining equations (9.18) and (9.19), has been used to simplify the complicated subscript

by |w

ﬂ ““A“H‘ dependence in (7).
L1l &
~— .
w=
H
1 Wm' ”'If»--} ' Niw i 2 3
," WM"II‘IL‘\ 7 =1 ‘ Napon N Nato-uy
| i ! . 2 N Nao— Nato-i
:{__\ 3 N Nito-g) Nego—p)
} 4 Negman Y Natv-uy
N
il TABLE D-2. Definitions of Complex Frequencies v Appearing in the Third-Order
|w|w| ?. ,- Integrals (5) .
[
|
m |||||||i_?_\ k=
“ - . . Uik . ] 2 3
m ill ||||L. : :
! 1= YA i{w — ve + Vo — ¥g) ¥a + l.(l-" - "o) ¥+ i{w - Pa)
m WWML 2 P i — v+ vy — vg) Ya -+ i{vp — vg) ¥+ i(vy — w)
W . 3 oyt iw— vt vy = ug) Yo + Hvp — vo) Y+ Hvp ~ w)
I ‘w.,:.k-‘_ . 4y — vy v, — ) 7+ iy — vo) ¥+ Ko — va)
| » -

u‘l ‘wum"ﬂ_”‘“-l
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dealing with more complicated problems, such as the multimode ring laser
{O’Bryan and Sarpgent, 1973), or the still more complex Zeeman ring laser
(Hanson and Sargent, 1974).

The integrals (5) can be evaluated in terms of the plasma dispersion function
{10.29) in two ways. As for the dispersion function itself, [see (10.31)] onc can
complete the square in v and perform the velocity integration. The resulting
time integrals can be reduced to linear combinations of the dispersion
function by suitable changes of integration. It is both simpler and more
general, however, to perform the time integrations immediately, obtaining

Tiw = iNLKr12 jw dv exp{—(v/u)2]

X {(on + BwiKv)(viz + SweKv)(on + isgakv)} N

and then to separate the frequency factor into partial fractions. The result is
the linear combination of plasma dispersion functions given by (10.29). In
fact, the second line of (7) can be expanded as

el ey e vl e
siv1 — sz f vy + innKv vz + iaKv Ua+f.S'3KV)

ol v || P e i)
ToAsivz — Sooy /| \sivs — savffol + 51Ky v 4+ iszKy

) o - )
Sab3 —- Sgva f\ve + is2 Ky wg + iszKvl | :

in which we have suppressed the [ and w subscripts for typographical sim-
plicity (vr stands for v and si for sy;). Using definition {10.29) with (7)
and (8), we find

Tiw = Niw [ 1 ]-l'h [2(03/53) - Z(ulfsl)]

S — Sz Sy — Sab)
_ 52[2(031’53} - ZWSZ)H _ ©
Fal3 — J3vug
In particular, for w=1 (sa = —s5 = 1, 52 = 0), we have
' N [Z(on) + Z
_ (_ﬁt_{) [ {viy) (013)] , (10)
vz viL + O3

for which we have used the refation {which follows immediately from (10.29)]
Z(—vy = —Z{v}.
Similarly, for w = 2 (53 = 51 = 1, 52 = 0}, we have

T = — (—IYE) {M}

[H¢ vir — o3

(1)

and for w=3 (3= = 1, 52 =2),
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' Ty = .1_( Nia )[Z(L‘m) — Z(vu) _ Z(ers) — Z(on)2)
«‘ 2 \vgy — /2 3 — up . bt 2f2

The complex frequency ms sometimes equals uu, for which
Zly) — Z(on) _ dZ(vu)

] . 1)

"
uulﬁ}n viz — bn dop 13)

As the atomic speed u — 0, Z(v) — iKufv, and (9), (11}, and (12) reduce to
(14)

w b}
u—0 Dr1bi2a

:m : oo — iKuNpg

as they should according to (7). This limit gives the same result for 95,(¢) as
that derived earlier (9.14) for the stationary atom case.

Faor large Doppler broadening (Ku > atomic decay rates and various beat
frequencies), .

Z) = iv 7, {15)

: an approximation which will be referred to as the “strong Doppler Jimmt.”
‘ The third-order integrals reduce to

T = 2ivreNn {v(on + wig)] -1, T =Tn=0 (16)

Values for which y « Ku but which are accurate for any detuning (“Doppler
limit™) can be obtained by use of (10.32):

T = iy Nu {vz(on + vi)} 1 lexp {— [Im{op)/ Ku)?)
m + exp{— (Im(o)/Kul)).  (17)
In the strong Doppler limit (15), the third-order contribution (4) becomes

T (1) = 5 in' R RKuY 353 EuEp Lo exp(i¥nupa)

X [Dalvy — vo) + (o — vo)l [Natoo) Fleo — bou+ dvp ~ wo)
+ N (=4, — $ve + v))). (18)

i The multimode amplitude and [requency equations are {9.18) and (9.19),
| with the linear net-gain coefficient a, and the linear mode pulling coefficient
Gq given in Table i0-1 and the third-order saturation coefficients given by

[
Dusso = 5 oM Kuso) ™ 3 )‘_*,IT,,.,. (19)

In the strong Doppler limit of (15), Eq. (19} reduces to the value in Table 10-2.
One can also identify that value directly from Eq. {18) by including a mulu-
plicative factor of uf2ep.
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GAS LASER STRONG - SIGNAL THEORY

Appendix E. Gas Laser Strong-Signal Theory

Tl:us appendix gives the details of thc gas laser strong-signal theory
motivated in Sec. 10-3. The complex pola.nzauon *(t) of (10.55) is obtained
and combined with the self-consistency relations (8.11) and (8. 12) to yield
amplitude- and frequency-determining equations. It is shown that the lowesi-
order approximation to the theory yields the rate equation resulits of Sec, 10-1,

It is left as an exercise for the reader (Prob. 10-10) to show from the
equations of motion for the population matrix elements {10.10)-(10.12) that
the equations for the in-phase and in-quadrature polarization components

Cp and Sy of (10.56) and those for the populahon difference D (10.58) and
sum M (10.59) are as follows:

Su=—3Ss — (W—v) Cn ~ ";E" sin (Kaz) D, )
Cn= —yCn + (@ — va) S, (2

D= Ag— b — asD — Hya — 1) M + %‘ sin (KnZ) Sp, 3
M= s+ kv~ yaoM — Hya — w) D. | @

We can reduce this set of four differential equations into a pair of two in-
tegrodifferential equations by substituting the formal integral of (2) for Ca:

13
Ca=(w—va) [ dr' Su(, v, ) exp[—t — )] )
into (1) for S, and the integral of (4) for M:
14
M= —Ly, — ]"“)_J- dr' D', v, 'Y exp{— yuplt ~ )] + ﬂf_i'_ﬁ’

Yab
into (3) for D, thus obtaining

382
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§n = —ySn — (0 — u,,)zf’ dr* Sulz', v, 1) expl— pt — 1]

- "f" sin (Knz) D, )

. '
D= —yal + Hya - )’b}zf dat’' Diz', v, tyexp[~ yaslt — 17
Eqn . .
+ = sin {Knz) Sn + vavsyar~—t Nz, v, 1). (7

"'We now sybstitute the Fourier expansions (10.60) and (10.61) for S, and D
into these equations of maotion, remembering that Niz, v, t) is slowly
varying in both z and ¢ and that d/dr = 3/d¢ + vd{dz. Equating cocfiicients
of exp{(2j + 1)iKqz] resulting from ([0.60), we have

(2j+1)iKv + 3+ @~ val? (2 + 1) iKY + 3] o
! pE,
=5 gﬁ‘(‘hﬂz — q2). (8)

Similarly equating the coefficients of exp (2ijKz) resulting from (10.61}, we find
{25Kv + yab — +{ya — y6)? 2KV + par)~Y}

1 ¢F
= —_5_—‘%;”—(92;'“ - ¢2-1) + Yayo¥ar ldp. )]

Dividing by the factors in curly braces, we find the single equation for the
Fourier coefficients:

g = Ea@fgin — gi1) + g0, (10)
where the dimensionless amplitude
Ex = VI, = pEn/V2yayihy, {(11)

and the sums of complex denominators
Dajer = HErp)VE {(F{(2/ + D Kv — (0 ~ )]
+ N2} + 1)Ky + (w — va)]}, (12)
Doy = Hbrar)? (DUUKY] + DUZKN).
- Equation (10) can be solved for g;41 in tertns of g; and g5-1:

giv1 = gi-r + (EnD5)Ygqs — 650). (13)

A similar equation yields g;—; in terms of ¢; and gg41. Hence, once any two
coeflicients in sequence [or, by (10}, one out of sequence] are known, all the

rest can be determined. This fact will be useful in determining the z and v
dependences of the population difference D. To calculate the polarization, -

however, we need only q; and ¢-1, for all other coefficients multiply ex-
ponentials which vanish in the Fourier projection of (10.60). We now proceed
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to calculate these coefficients in terms of a continued fraction.
Dividing (10) by g4, we have

lzﬁg(ﬂﬂ—w), f 0.
il gl T

introducing the ratio
ry = —(%’:—‘) for j >0, (14)
b

we can write (13) as .

ria1 = Eny (1 + Enara)—L 5
We have thus reduced the linear second-order difference equation (equation
containing three consecutive indices) to a nonlinear first-order difference

equation. Iteration of the latter produces a continued fraction. In fact, for
Jj =1, we have

ro = Engl

0= I+ En-@lrl '
Furtherinore,

- En s

r= l -+ L‘.‘ﬂgzr-z'
which gives

Fo = Eu.@[
CT I F 1,20\ + Enlry)]
In genecral, this iteration procedure gives the continued fraction
E‘n.@l

O T TS Gl + 1ot + - (16)
For negative j, we use the ratio
' 5] .
= s 17
s gi+1 17

which with (10) becomes
ri-j = En@‘j{l + E—n@}rj—l]-l-

For j = —1, this equation can be iterated as in (16) yielding the continued
fraction *

r'ey = En@0[[l + In@aDo/ll + In Do Daf[l + ~ - - . (18)

Now the sums of complex denominators &y = 25* due to the fact that S,
and D ure real. Hence v’y = ro*. Further, by the definitions of r; and r'y,

g1 = — rogo (19
g-1 = r'-190 = ro*go. : (20)
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Combining these relations with (10) for gs, one has
q0=EnDo (g1 — 1) + 1 = — Eo8y (ro + ro*)g0 + 1
which gives
go = [1 + 2E.FRe(rp)l L. (21)

Inasmuch as the results of this theory are all in terms of the real part of the
continued fraction for rp, we introduce the real function

= 2yav2yare Enyr1Re(rg) = 2yash (pEn)"! Re (ro). (22)
With this, ¢ is given by

-

go= (1 + LFY, 23)

and with (19) and (20) .
g = — ro(l + L§)3, (24)
g1 =ro"(1 + I ). (25)

Substituting the Fourier series (10.60) for Sa(z, v, 1) into the integral (5) for
Cn(z, v, f), we find

Calz, v, 1) = —H{ w— va)N(z, v, 1)@ ’>: gaser(v) expl(2f + 1)iKnz]
x [ dexpll=y = i@ + DK~ 1]

= —i@ = va)Ve 33 g1 F(Q) + DK expl@ + Dikazl 29)
Combining this and (10.60) in (10.56), we have
Fulz, v, 1) = —pN ,Zi- gese1 XPL2/ + 1)iKyZ]
: x {4+ (w — va) (2] + DKV}
By (10.57), we have .
Pall) = —p 5 -i- f “ dz N(z, 1) sin (Kaz) expl(2f + 1)iKa2)

oo

x f dv W) {gesa(0) i + (& — va) D2 + DKV

= —pN J" dv W) {g-li + (0 — va) D(—K¥)]
| — i + @ — ) FE]

= —2pN L- dv W(v) {i Re{ro) + (@0 — va) Re[roZ(KW)]} (1 + 1)t
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Combining this polarization with the s=lf-consistericy equation (8.11) and

equation:

5g, En =5 208 f__ dv W) Re(ro)(1 + I §)1.

With relation (22) between Re(rp) and {f, this becomes
HEoYab

e =2 " dy W) G0, © = vay In) U+ T §, @ — v, L1, (28)

where we have used the evenness of the integrand in the variable v to change
the lower limit of integration to O by inserting a factor of 2 on the right-hand
side. This equation determines the intensity I, of osciliation only implicitly,
as contrasted with the third-order perturbational treatment, which results in
the explicit equation (10.39). Nevertheless, Eq. (28) is quite amenable to
numerical analysis, as illustrated in Sec. }0-3, Using the self-consistency
equation (8.12), we have the frequency-detertnining equation:
= ?: = 2N{vgje0En) f v W) Relrols, & = va, 1)@ (K]

X (1 To F¥, 0 — va, T} (29)

It is convenent to express the amplitude-determining equation {(28) in terms
of the threshold excitation Ny, given by (10.40), or equivalently by use of the

relation 7 = 0 with @ = v, in (28) and (10.29). Further using lhe relative
excitation 9L = N/Nr, we have

T = 2Ku[yasZi(y)]! jo dv W) F (v, @ — v, I)

{1 + In G (v, @ — vp, £p)]7 (30)

The lowest-order approximation to the complex polarization F,(1) (27) is
given by truncation of the continued fraction (16) for rg in the first term:

o — Engx 1 PE“

{FEY — (@ = va)] + F[K + (0 — va)l}, (31)
giving
¥ = Zl’ab(z}'a)'b)-yzén“l Re(re)

= 27a6(27a70) V2 Re (@)

= E(F@ -+ K+ P - K. O

This approximation is equwalem to the rate equation approximation dis-

cussed in Sec. 10-1, for it gives the same value for the population difference.
In fact, from (10.61) and (23)

‘choosing the steady state (E, = 0), we have the amplitude-determining
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Diz, v, 8) = Nz, v, t)qo = Nz, v, e)(] + In{P?

= Nz v, ) 1+ 1.1 ”“" [Z(@ — va + Kv)

4 L@~ va — KW, (33)

which is the same as the difference (10.22) Hence the pelarization (27) must
also reduce to the rate equation value (10.27). We can prove this by vsing (31}
and a partial fraction expansion as follows:

En

{w — va)Relrg F(KY)]) = Hw — va) Re {Z (KD [Kv — (@ — va)]

+ DK DKy + (0 — va)]}

= 5 LR Re (i@(Kv) — iKY — (@ — vn)]
— iF(Ky) + iF[Ky — (@ ~ va)l}
i = %-"-f?l'- Re (iF[Kv + (@ = va)]
— IF[Ky — {© — va)}}. (34)

Using the relation Re(z) = 4(z + z*) with (31) and (34), we find
i Re (rg) + (& — vs) Refro & (Kv)

=i 9Er {(FKy + (0 — un)] + 2Ky — (@ —~ va)]}.

Combining this wnh (32) and the integral (27), we find
Fon(t) = — 192 f dv W(v) D — vn + KY)

i x [‘ + I F@ = va+ K9 + Z@ = va = KO, (39)

where we have replaced .@""[Kv — {w — va)] by Z[Kv + (w0 — va)}underthe
integral there by introducing a multiplicative factor of 2. Equation (35} is the
same as (10.27) obtained by use of the rate equation approximation and is
discussed in some detail in Secs. 10-1 and 10-3.

References
The material in this appendix was adapted from:

S. Stenholm and W. E. Lamb, Jr., Phys. Rev. 18], 618.
See also the references of Chap. 10,
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ZEEMAN LASER PERTURBATION THEORY

Appendix F. Zeeman Laser Perturbation Theory

In this appendix we calculate the polatization of a multilevel medium
subject to the vector electric field of Eq. (12.1).- Two derivations are given:
one for a medium with angular momenta £ = | —~J = (, and one for arbi-
trary / values. The results of the first calculation are contained, of course, in
the sccond, but it is thought that the explicit calculation for a simple case
reveals more structure than the general calculation. Ironically enough, the
general calculation requires fewer equations, for several matrix elements can
be represented by a single term having variable indices. '

F-1. Calculation for J =1 J=0

This calculation is motivated in Sec 12-2, where we note that terms contri-
buting to the complex polarization & are given by those for &%, with an
exchange of minuses and pluses. Hence we write equations leading to &%,
alone. This shortens the calculation without Joss of generality.

In zeroth order, we drop all terms in the equations of motion (12.35)
(12.38) containing matrix elements of the perturbation energy and find non-
vanishing contributions only to the diagonal elements. We have

}5uu = —%YaPaa + Aa, (l)
with the integral

Peat® = Lo f dt’ exp[—yaft ~ )] = % - , 2

In first order, we have non-vanishing contributions for pys and p_s, for which
we write only {from (12.35)]

388
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i ot
proz v 1) = 5 [ dt' expl—limes + 9z = N 720
X [paar®(Z, v, 1) = pon'®(2’, v, "))
i = .
= £ NG W) [ d expl=(wss + NI F50t = ) O)
where the popu]ation' inversion density is taken to have the form
Nz, 1) W) = Aoz, v. Dya~t — Aolz. v, Dye~Y. ()

As in the scalar theory, we assume 2 Maxwellian velocity distribution far

W{(v) in our explicit calculations.
In second order, we obtain nonvanishing contributions both to the popu-
lations p++ and p—— and to the quadrupole term p4—. We have from (12.36)

Pz, v, 1) = -%- J'; T d exp(— yat} 74spus + C.C.

= —#-2N(z) W(¥) fo- @ [ de exp(~rat)

X { Pas (t — 1Y expllivss + p)T7]1 75:(¢7)
+ Zhu(t) expl—(icwes + Y1 701"} (5)

and a similar expression for p_®, given by (5) with the plus subscript
replaced by minus. The lower-level population

p®(z, v, ) = ~[pe® + p-.®] with yg . (6)
The quadrupole term is given by a formal integral of (12.38) as

prz, v, 0) = = 5 [ a7 expl—(iwes + YN [ P2rpr- = Fiepia]

= 5w [ " d f " dt exp(— iy + 7a)7']

% | Zoo(t") exp[—(iws- + )T} F5- (")
+ () expl— (i + V171 750} (7

Integrating (12.35) and using (5), (6), and (7), we have the third-order con-
tribution: '

per®(z, v, 1) = - [ de’ expl=(ioss + NTH ZarltNpas® — Poo'?]
%o
+ PP )

== —iﬁ"'NW.J;- dt'J;- dar” f: a7 exp|—(iwes + YT

x [ 7300 [erp(=ae) + exp (=]
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ﬁl o

X { Zaalt") expl—(iwps + ¥) Zpa(t™)

- { + Zoult") exp[—(iwps + '] Faalt)
o i
. i + Z5(t") exp(= yor)
o ) : x [ Fo(t") exp[—{ws- + YT F o (")
| w + (") exp—~ iy + DT P2}
T~ , + 2ot} exp[—(iwy— + ya)7']
l‘, oy X {5t} exp[— (iwp- + P)T] Zp-(1"")
| P i
e + P expl— (o + NTF) ]| @
| L~ .
. s v Substituting the interaction energy (12.33) into the first-order integral (3)
T~ ? we have
I{ & - oz, v, 1) = —%i%NWE+ exp[—i(vet + $4))
b '
B oa
: " -~ ‘ X f dr' exp{~(iwyp — fvy + YTIUE.
u il - '{ ) 0
"' ' W, Expanding U(z) = sin [K{z — v1)], using a trigonometric addition formula
! A and keeping only the terms even in v [the 0dd term vanishes in the iategratio
Il g
‘ N over v provided W(—v) = W(v)}, we have
/ .
’ "|||||""" ) p+b‘13(z, v, !) = --'-"_'E II% NWE+ Cxp[—-(iu_,.f -+ ¢+)J sin Kz
Wl -
oo -~ % ‘J; de’ exp[— iy ~ vy + y)7sin [Kiz — v17)]
p .
il ]
‘ Ll : = "—% { % NW(V)E+ exp[—i(v+! + ¢+)} sin Kz
T .
o '“"",} X [D@sb — ve + K} + D(wsp — ve — K], e
! e Performing the projections required by (12.34) and using definition (10,29
" ~ of the plasma dispersion function Z(v), we have the cornplex polarization
b 'IIIIIU\J\I\U - . . e . . 7 i
;!! -~ G = i ?_?%1 NE,Z[y + i{wes — v3)). (10
‘% JHUM“""{"_\ . This is the same as the scalar case (10.28) except that we have used w,, ir
. R place of w and there is a companion equation for the other polarization
P —~ Further substituting the interaction energy (12.33) into the third-order
; i, ‘ iﬂtcgl‘a.l (8), WC ﬁnd
ool : N :
[ R &z v. =_(ﬁ)a —i (g (" gt {7 gt
oy, : P+¥z, v, 1) = i | L5) NWE, expl—i(vat + 4.)] J; dv J; dv' fo Ac.ir’
A x expl—(iwss ~ vy + 17} UVUH")U(")
1 --||||! A . *
[ o

N
.
—
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.

JETE !

X {Eﬂ[exp(— 7at"’) + exp(—yor")]

x {expl—(iwe, + ivy + ¥)1'")
+ exp[— (w4 — iva+ )™}
; + E_Zexp(~y1") {exp[—ilws. +iv + y)7']
/ + exp[—(iw_p — v + YT}
+ E_texp[+(iws — vy + iv- + ya)T']
X {exp[—(iwp + iv_ + YT

+ exp[—(iwsp — fuy + VTP (11)

1 We now substitute this contribution into Eq. (12.34) [or the complex
1 polarization. In so doing, the product of four sines (for the standing-wave
case) reduces via trigonometric identities and neglect of functions odd in v to

L{cos [KWt™ — ©)] + cos [Kv(z" + 1)] + cos [KW(T" + 20" + )]}, (12)
Although it is possible to evaluate the resulting integrals exactly along the lines
of Appendix D, we make the delta-function approximation, valid in the limit
of large Doppler broadening. This procedure capitalizes on the fact that, for
large velocities, only the term with cos [Kv(t""" — 7] attains slowly varying
values in the time integrals, thus vielding an appreciable value. The other
terms tend to averagz to zero. Performing the veloeity integration first by
completing the squarc, we have

Wrur [ " dvexp [~ (vu)?] cos [Kuf(¥, 7, )]

=J7 rw dx exp (—(x2 + iKuxf)] = exp [—L{(Kuf )2].

o

Thus, for large Ku and /= 1" = 7', the exponential acts like (" — 1'):

é J, dv Gt ey exp [ H KA — v = 2T (KGR, ). (1)

Carrying out the integrals in this approximation, we have the third-order
contribution:

q - L -
F0) = FivT o NE, [ dv [ a2 fexp(—ya) + exp(— ]

x {exp(—2yt") — exp [—2(wp — ivy + P17

+ E 2exp (—yor”’) {exp[— (i — ivy + fo- + 2977}
+ exp[—(iwys + iy — ivy — v + 29)T}
+ E2exp [—(iws- — vy + v + ya)1'') {exp [=(iws — i,
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+ iv_ + 29)7) + exp [—20imyp — iva + y)r’]}]. (14)
“ Performing the remaining time integrations, we have finally
POty = & i @ NEKLLE, (E,2yaslyyer) {1 + 19(@1s — »2)]
“ + E_2p- 2 (8) + &(wo ~ w)l

+ E2Fa(20)[FQ) + Plane — will}, (19
where the averape frequencies

e

wo = Hwis + o), v = Hvs + v—),' (16)
and the magnetic field splitting |

d= #BfH-— Hoy —v) = FB‘?H
“ Substituting the first- (10) and third- (15) order contributions to the complex
polarization &7,{t) into the self-consistency cquations (12.11) and (1212),
we obtain the intensity- and frequency-determining equations (12.43) and (12.
44) with coeflicients defined in Table 12-1. A physical interpretation in terms
| of hole burning of the populations gy, p——, and pas, as well as that of the
quadrupole element p,., has been given by Fork and Sargent (1966).

F-2. Calculation for Arbitrary J Values

“I We now calculate the polarization (12.27) of a medium with arbitrary J
' values subject to the elcctric-dipole interaction energy (12.25). The equations

m of motion for the general density matrix are as follows:
Parvr = —(iwar + ¥) Parry
: ] i
m +—;~¢E_:. Farvparar — "ﬁ—?::. Faror Prrny, Qa7
ﬁa’n" = ""(ima'a” + )’u)Pafa”
o +_;j";,\‘(%"aﬂpa'b" — Pavrpyran) + Aadargr, (18)
: Poriwe = —(iwprepr + Yo)Porrvt
m +-—:‘—i-E ( %”b‘pbﬁﬂ-” -— Vb"n”Pnf’b') =+ Ablabn’bﬂ, (19)
alf N
Porui = Parpe™, (20)

m wherz for simplicity we havetaken yoor = ¥, 7ar = ¥a, a0d yp = pp. The first-
order contribution is given by



PR S WWW&“‘WWWW\WW

L]

ZEEMAN LASER PERTURBATION THEORY 393 | b

it . ) . ?“WA*

PareWz, v, 1) = -1?.[ dt’ exp{— (i + ¥) ( — 9] -
atad l“*(H iy

X [parar® ~ pop®] Fan(t’) ‘
° - . o
= ;—iW(v)N(z,t)_L &t Pty expl—(iway + Y 21) ,

where we take Narw = N. Using (18), (19), and (21), we have for the second- ik
order components porar® and prp): Al
palg!l(z’ (z,v, 1) _ - A
=1 J’ "dt’ exp(—(iwatar + a1 E[yy,a,,(;')p,,,,,,,m(z v, 1) [

— %rwr(f’)pytguﬂ)(z v, 1)] : ‘!"'.'.'.'."(j:

— J-- W(V) J.- dar’ J.' dr”’ exP['_(iw“’“" + ?“)II] |||uJ

'"Wm‘

!IIIIIIIl .

E [Vufafr(f')N(Z, t) Va!y:(f"} cxp[—-— {Imauw + }’)‘r"]
+ Pt IN(zZ, 1) Poran(t’’y expl—(iwprarr + n, §22)
where U7 = t' — 1", and

Pz, v, 1) = — 55 = W) J' dr’j &' expl—(iopro + 1)1 W

x 3 (Fart)N (@, 1) Porrar(t”) expl—(ipran + 1] : ||||§ ;

+ Pora(t)N(z, 1) Pame(t') exp[—(waner + 7T} (23)
Combining (17) with (22) and (23), we have the third-order components:

o0 o,g'o'{e 0 009 0-‘0 0 O

Parp®z, v, 1) = %j- dr cxp[—-(im..:b:‘ + W Faro(t)para'®(z, v, 1) _ &
[ ar! i,
~ 5 Fonlt)poros®(z. . 1) e
i - - ’’ - e __ I at bt ’ '“m !
== W(v)'[; d"r'_L dr J; dr" exp [~ (iware + )] ’:) n
‘ ; | - i
X Z?Zf; [%nw(r’) exp[—(iwarar + ¥a)7"] e e
% { Poran(t)N(z, 1) expl—(iwar + PT] P anrlr™) " ‘ -y iy
— Parr{t"IN(z, 1) expl—(iwpran + 7)) Fhrear(t™)} 5 @
+ VarwrdtD expl~i (o + 297} oo |
X (Famt"IN(z. 1) expl—(oprar 4+ V)] Foranlt™) L T
+ Puard2")N(z, 1) expl—(iwarny + ¥) 7] Fart" N 1, (24) :) -
where ©'7 = /" — "', ‘ ' i

i
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In substituting the perturbatiop energy s of (12.25) into these ex-
pressions, we can save some effort by using subscript products like 4% on E,

v, and ¢ with the value plus for &’ = & + | and minus for & = &' — 1.
we can then write {12,25) as oo

o = —% V2 pawrEarty €Xp {—ivaret + gan)JUCZ). (25)
Substituting this into the first-order term (21), we have

Loz, v, t) = —4 VTTW(WN(Z) parysEarps eXpl—i(varyst + $arv)]

X J; dt’ exp[—(iwgry — ivary + ¥)r') U(z — vr').

Performing the time integration as in Sec. 10-1 [Eq. (10.16), standing-wave
casc], we have

Paraitz, ¥, t) = —-‘}' ﬁfpafyﬁ—lN(z)W(V)En:br Cxp[--f(varbf! + Barvr)]
X s5in Kz [ B (waryr — vary + Kv) + @(wannr — vary — (K)). (26)

Combining this with the complex polarization F (1) of (12.28), we have the
first-order contribution:

G = —Zﬁ(ﬁKu)_l _)_—;:bz;,‘ Sar, b’+1i9a’b'lzf+2[? + Hwarpr — vl (2T
Hence the first-order coefficients are given by

o1 + day = vNp2(AKuzo) ™t T3 6ar, vt | P2

X Z[y + {wgrnr — vi)] ~ }fQ—” i (28)

To [acilitate evaluation of the third-order contribution (24), we represent
(24) by the perturbation “tree” in Fig. F-1. The total contribution is the sum
of the products of terms along the “limbs” when the three time integrations
are performed and summations over g” and ” are included. To further
simplify the calculation, we temporarily introduee the mode phasor

Ayt = parb it Egryr exp[—i(varnet + daror)]. v2)
The first limb of (24) is then

® = J" -\/T fNWE 52 Ja’fb’jbf’ﬂl’#‘fbl’
al’ v

x [T [ aen aen vy ueanuen)

X cxp[-—i(w.rb, — Vgl + varprn — v,,;by;)-r' —_ }’T']
x exp{—i{warar + Valrptr — 'u.p'blr)‘[" — }'nT”]

x cxP[“‘i(UJafb” - chb") - }’T"']

1ty g W g

£ Ak ha-

%NWH
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(3
p"'b ’

Kubreﬂ.r‘n 7‘. “"b".o,' l’.T”
e “ L o
Wi orgurtryer K‘b"eb"u a”p " K"a"eu"b' f
LA RO LA A LACTRT R
1= =2 _ =3 t=a

Figure F-1. Perturbarion tree for third-order contribution pav'™ of Eq. (24). The eapare
defined in the simpler tree of Fig. 10-3, Connecting lines with vertical ascent indicate multi-
plication; horizontal rows, addition. The earliest perturbation is represented by the first (bot-
ton:) row of boxes. Inasmuch as F srvr represents a general perturbation, rhe tree can be used
with uridirectional and bidirectional ring lasers as well as with the two-mirror standing-wave
laser.

: anc the same product of the U's. Furthermore, the exponential for 77 is the
; same. Hence the sum ol the four branches is

pafb.r(:” = ®+®+®+® = 'i‘ 2 lN(Z I)W(V) Z? Al arrprdlprige S arpir
a7 7
-d 07 e 7 gt NTIRE frr
xJ; r_[o erdr Uz yU*(2")U(z"")

X €exp [—— i(wa:bf ~+ varryr b v — un:bu)'r' —_— }'T’]

3 [exp{—‘i(wa’a" + varprt — vafbfr)'[” — }’aT”]
x {cxp[v-f(ﬂ)nfbff —_ varnu)‘r”’ — ]J‘.'.'”r]
-+ CXP[—I.(U«:HM —_ wauarr)'rm — }FT"']}
+ exp[-- pityt + varegrr — vaubl)‘l’” - ybr”]
» {Cxp[—-f(varrbn —warp)t’ —~ y‘r'”]
+ exp[—i{wartpr — varp)r’”’ — }"1""]}]. (30)

In combining this with the-complex polarization &%, of (12.28), we encounter
a product of four U's which can be reduced to expression (12). Using the
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Doppler limit approach of Eq. (13), we perform the time integration and find

. for (12.28)

i b

2,00 = [ v W) - [ ds U0 S5 b0 was oot porr®s 3, 1) E

1

=i VR NORK 5 Gur v11 55 ewarpanpvrarpar i

= 57 arr e 4

X EarpeEpignEgryr explilvy — varp + varprr — varpr} }}

m + i(sﬁ_,_ —_ ¢a”b’ -+ éauon ~ garvrr)] ‘

|

r X 1D o(wararr + vgrrpn — varpe) . f
’ i

X ‘!‘[.@'(-lﬂ)arbr + 3 1 Warprt — ‘2L varpt + '!'Ua”b" —_ uarbn)
i -+ @‘(_L Watpr + + 7 Opig — ‘%‘]J’nﬂbf - 'l‘"n’b” -+ yany;)}
|

-i—.@'b(a)y!y + varep — vgrepr)

x % {@(Jz“ Darpt — 3 Warprt — % varryr — i—uatbu 4+ wetipr}
+ P vy + + wary — varer + Fvarpr — -zL l’a"b”)}]- (31 ‘

m ' To determine the third-order coeflicients, we consider the three sets of
allowed transitions for &%, in Fig. F-2. The first case involves £, alone and
bence leads to self-saturation terms. Specifically, multiplying (31) by v/2es
3 for @ = o' and b’ = b’, we find the complex third-order coefficient of E,3:

2Hh? }"u.}'b

+ if, =
P+ By = 92

i =F EE 5@', b'tl] Pa'b'fF!‘
x [}'@(0)._3!5! —_ v+) + l]. (32)

Here Fy = {(yas/y)F1, and F is defined in Table 12-1. The mode-pushing
p+ and self-saturation f.+ coefficient are given separately in Table 12-2.

Similarly, forcase2of Fig. F-2, 8" = ¥',8” = &’ ~ 2, Egpy = Epprgn = E-.,
and £,,,., == E,. This yields the complex cross-saturation coefficient :

Joep =T iR ?iﬁ %:%; dar, br+1| Parer | 2| Par-z,00 ]2
X {Da(280) [ Fwarer — vi) + D(5a))
+ 7t [Fwaw — Sa — vi) + P8}, (33
wherc the frequency difference, |

bo = ”—“gﬁ’ ~ Ay — ) = ’i‘l;.?”;"i, (34)
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; )
Case 1. f 4 a'a level a sublevels :
self-saturation l _'"“IHH”“
. vd"b' = vn‘"b" = y’ran = y+ Ea”b‘ p——— E' por - ‘Eb"e" : . )
: . dmnmp
PO level b sublevels :
»
Case 2. =~ 04 " —_— a .
: .
Voaigr B Wgrpor = p__ Ea"b' bt Ea'b" T
Vot par = l"+ ' “M.....-Ell

-
i
0
il
)
g

o,

»
Case 3. =8, _ _ .
= ’ E .
Vgrg =¥ ) !
* ‘Eﬂ"b' Ebn‘n Eu’b" - )
Walrgnt = patpet =¥ _
”

Figure F-2. Diagrams depicting the three allowed combinations of fields which contribute
10 parwuar-) int third order, .

is approximately equal to the Zeeman splitting of the upper levels. Here we
have calculated {rom definitions (12.18)

- ) B
J‘z‘(ﬂ)anbr + Cﬂn_”y) — %‘(!-’4. + U-) = Warpt — ”Bﬁga + Jf(v+ - V-) - Y. (35)

Equation (33) contains both a coherent “electric quadrupole’” contribution
(terms proportional to &5(2d,)) and an ordinary incoherent cross saturation.

Finally, case 3 subscripts a” = &', ” = & + 2 and the mode amplitudes ~
Epnp = Ey, Egpignn = Egyer = E... We find the complex coefficient .o -
Srsee =} W) 5T by | |2 g, | | N
X (e (Bl@ww — 8 — 1) + D) | S
+ F(280) [F(wary — v} + DG, (36) |-
The mode cross-pushing and cross-saturation terms are then given by | o W :

, 2Hy,
Ty + - = :2 }’b[‘9+__+ + Fhy-]

-, (1
- | o
b
¥

= M—;-Z"Fx 53 doty st | parw [ {lpar-r]?

-
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1. | '
DR X {Du(262) [Dl@arrr — v.) + D)) |
U :‘“Amw' ) + po 7 {Fwarr — Fa — vy) + F(Ja)]} l
[ + 1P, vaz|? (D20 D(@ar — vs) + D(G)]
T + pa P warrr — Sb — ve) + D(S))}}. (D)
I . o . l The corresponding formulas for p- + 18 are given by (32) witha" = &' — L.
AN The cross-saturation coefficients 1, + if_, are given by (37) with », and
o - v~ interchanged (in the d's too), ¥ = 4’ + 1, and |pgr.2,1r}* replaced by
1 . ' |parsz,0r] 2. We recommend that the reader interested in performing this
‘ v kind of calculation draw the figure for E_ corresponding to Fig. F-2 and
lm Ly — calculate the third-order coeflicients from the complex polarization (31). Most
ey v o of the cocflicients calculated here are summarized in Table 12-2,
; vl - _
i o
T F-3. Sum Rules
P
(. — As discussed in Sec. 12-3, the zero- (magnetic) field limit is particularly
I v revealing with regard to the electric field polarization. For that discussion, the
c — following sum rules are required:
v
I Z? dat, 21| Parer |
. I /') ar o
Lo . {9‘1(1 + DT + DJ2 + 27 + 1)/60, 47 =0, (38)
'[H > ‘ P4 + DT + INT + 6T+ 120 + 5)/60, 4T = + |, J~—J + 1 (39)
R - Zﬁ‘:’ Sarsors1|Parv | | Parez,mr |2 + |Pas0a2]?]
o 3 lp“J(J + 1)+ 12T~ 1) + 3)/60, 4T=0, (40)
ey T lpq 4 12T + 3)27 + 12T + 4T + 5)60, 4T = +1, T +1. (4])
- We can derive these sum rules from the definitions of the matrix elements
" (12.23) and the simple sum formulas (see Gradshteyn and Ryzhik, 1965)
. :
| I 2 72 = NNV + 1) (2N + 1)/, (42)
e
lm ~ - ,21 7= NV + 1) (2N + 1) (3N + 3N — 1)/30. (43)
oy . =
T WL\ . ' Summation formulas for j and j3 are not needed inasmuch as the lower limits
‘ M’ ' of the summations in (38)—(41) are negatives of the upper limits, causing sums
[ i ' of odd powers to add to zero. We prove (38) for 47 = 0 explicitly and leave
C ‘ _ the others as problems. Using (12.23) and droppmg odd powers, we have
: ""II: I ’
" B el = kot 51 (=2 (U + 0 + 12
Iw 7
o~ : =get 5 UH + 1 - a2 42— ) + o
i, ' . ) [ S
I :
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= & ¢ I + 1)2(21'4- D—QR+ 2D+ 1)
x (27 + D3+ JU + YT + 1){3J2 3 37 = 1)/19]
= AL piJ(J 4+ 1)(2J 4 1){8J2 + 87 — 4]

16 15

=LeUU+ DT+ D)2+ 274+ 1. QED.
Note that by symmetry this result follows for @’ = b" + | as well.
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Appendix G. Collective Spontaneons Emission (Superradiance)

" Superradiance is the collective spontaneous emission of a system of many

atoms. We discuss ensembles confined to a volume small compared to a

| cubic wavelength, although extensions are available.t The atoms are strongly

coupled by their common interaction with a resonant electric field. Hence

it is not possible to treat the interaction between the field and an independent

atom; the entire system must be treated at once. In our treatment, we assume

that the atoms are affected only by the atom-field interaction energy; atomn-

‘ atom interactions (collisions) and other energies are ignored. In practice this

reguires that the atomic separation o be large compared to atomic dimensions

_on the order of a Bohr radius ap, that is, the wavelength A>> d>> ao.

This collective spontaneous emission or superradiance is illustrated by

[ photon echo. In our earlier treatment of these echoes (Sec. 13-3), we showed

that, when the phases of the individual dipoles became equal again, the

dipoles generated a large macroscopic polanzation producing the echo and at

other times yielded negligible polarization. 1n fact, randomly phased dipoles

m generally radiate at normal rates, vielding an energy proportional to N, the

number of atoms. But when their phases become aligned, they radiate energy

in a collective fashion at a rate initially proportional to &2, This latter rate is

charactecistic of superradiance. A difference between the present treatment

and photon echo lies in the method of preparation. Here spontaneous emis-

sion creates the phasing; two special pulses perform this operation in photon
echo.

1n ttus appendix we consider first (Sec. G-1) the collective radiation of a

two-atom, single-mode field system, using the quantum techniques developed

m tSuperradiance was originally defined and discussed by Dicke (1954). For discussions of
extensions, sce Eberly (1972).

400
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in Chap. 4. Even for this limited system, the phenomenon of radiation trap-
ping appears. The theory is then extended (Sec. G-2) to three atoms, for which
superradiance begins to show. The general case of N atoms is considered and
is compared in_Sec. G-3 to a single system with angular momentum J = 1N.
The analogy is particularly felicitous, for it makes it possible to dispense with
somewhat awkward notation and to treat various extensions simply.

G-1. Two-Atom, Single-Mode Field Interaction
The interaction energy for two atom§ and a single-mode field (sec Fig. ;
G-1) is given by . i
' P = —ery - Er — ery - g, : )
where r; and rz are the atomic r vectors, and E; and E: the applied electric

fields at the centers of the atoms. Provmcd the atoms are close, the fields are
the same, and we can write

O O

¢

G OO0

o
K

00

| 9= —e(r; + r2)- E. @ ~ W
In quantum-mechanica} form, this is given by the operator ' ' ) ,HW'
¥ = gl(oy + 1) + (o2 + o2h)] (@ + ast). ® 2
Making the rotatmg-wave approximation as beforc (14.65) and going into-the o™ iy
1 interaction picture, we have S
Y1) = g,(01 + 02) expli (va — w) 1] a,1 + adjoint. @ o
To understand how this Hamiltonian affects the system, we consider the ) ol
state vector
] Wact(t)> = Ut, 0)}ya—r0), () m

where the I/ matrix is a solution of the Schrddinger equation (6.63) given by

iy

the perturbation series - .
U@ 0) =1+ —-—fldt 7@) + (-) dr’ j FLENT () + - - - ~ B
~¢ i o B
= 145 t{g(on + odait + gilort + oat)ad + 5(—{} 20 . )
' | ~ i
(®) o
Suppase that the state vector (5) initially has the value oy I
e dO> = |bib2>{2, ©) ~ ]
that is, the field bas two photons with wavelength 4 and both atoms are in ~
the lower state (Fig. G-1). Then at time ¢ the state vector e L
. Tl
[Waett)> = Colbib2>|2> + Y2Cil)aihe) + |mazd}i i) i
. ' P
+ VICalaar>[0:), ® <
oY
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U

'

| I 4 ——— s \ /
MV P - 1 1 i
, ! : —_—b, —— b ' 0
N = i T

f

L

-
/

fD Figure G-I. Two-atom|field system shown m‘rﬂ bath atoms in their lIower s1ate and with
m S A two photons in the field. Because of electric-dipole interaction energy, transitions to possible
il - . excited atomic stales can occar in time, :
| € . .
“ where the amplitudes Co, C1, and Cz can be evaluated with the use of (6),
Tom- for example, Cz = (—ig,t/%)* to second order.
. 5 The point of this little dzrivation is that the atom-field Hamiltonian (4) can
1w : ' cause transitions between|bib2>12,) and the symmetric state 2-1/2{|aybed
™y © + |&haz)) [1h) and between this state and |aaz)>[0:>. Now there are
. W T four obvious states of the system, for either atom can be in either of two
i ' -~ states independently of the other: '
| : -‘,Wguﬁf; 7 (laraz>}0>, |@aba)| 1, {braz>| 1.3, [b1bz>]2:).
. F“’J o For this problem, it is.clearly advantageous to combine the one-photon
T~ l states symmetrically. There must then be a fourth state orthogonal to those
m"r, 7 i in (8). Finding that the antisymmetric state 2~Y2{a1be) — |b1azd] 1. is the
ey i required state, we are now confronted with the fascinating fact that a system
e : described by this antisymmetric state cannot decay to the lower state |b1b2)>
LN - . X [2>! The two atoms play *‘catch™ with a photon and never miss. In short,
; W_,.) radiation is trapped as depicted in Fig. G-2.
il ?
.
f' .
I HHW“‘—‘j ' ’ lz) = khﬂ;) |0l) .
',,,",wul"_ . - F3 ‘ ~
[ " _7) , IN=27%1a16,) + abyaxd 1)) 1102 27 % iy 8,0 — ib,a0] by
| 1’llllmll ‘ ' : —-— * - )
; - : 100 =iby 6,012y T
L . .
. Figure G-2. Diagram of siares used for two-atom/field system. The eleciric-dipole per-
§ 'Tﬂw.”‘ . ] turbation energy (4) can cause transitions between symmeiric states {first column), but rot
~. between these stares and the antisymumetric state} 1D {second column).
R f |
u e | . . . . . '
& ’ | Our discussion can be summarized in the calculation of the matrix elements
1

. ' between these states. The writing can be simplified by naming the states ac-
. cording to their atomic energies and degrees of symmetry as follows:

15
H 7" i
i ©
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(0> = [bib2>|21), O
(1> =271 Jaibz> + [Biae)][ 12D, (10)
[1D = 2712 |aybe) ~ {braz)][ 11D, (1D
(2> = |aazy| 02). az-

Here the totally symmetric states are unprimed; the antisymmetric state is
primed. This notation is easily extended to the many-atom case, which we.
consider shortly.

We designate the set of vectors (9)«(12) and later extensions as the Dicke -
representation. The reader can easily verify the matrix elements;

<1 |(ox + oz)at|2)> = 2172, (13) -
<V|(o1 + oz)at|2> = 0, (14)
<0 [{¢1 + oz)aljly =2, (1%)
{0 (o1 + oz)at[1’> = 0. (16)

This confirms our earlier conclusion that the perturbation energy {(4) cun cause
transitions only between the symmetric states; the antisymmetric state is
stable. This situation occurs elsewhere in varying degree; for example, the
285 state of helium is metastable and corresponds to an antisymmetric com-
bination of the two electrons. It is possible to create a system in the antisym-
metric state using Hamiltonians other than the electric dipole of (4). Specifical-’
ly, a Stern-Gerlach apparatus can be used to obtain one atom in its upper
state, and another apparatus to obtain a second atom in its ground state. The
two atoms can be combined well within a wavelength of the resonant radiation
in a bottie. Then the state vector for the system jaybz>| 12> can be written
as a linear combination of the symmetric and antisymmetric states{1) and
[1”>. The symmetric state decays in time, leaving a 50%, probability that
the antisymmetric state exists at long times.

G-2, Many-Atom Field System

In this section, we consider first the three-atom system, which contains the
essential formal characteristics of the many-atom case, and then the many-
atom system itself. In so doing, it is convenient 1o denote each atom by its
position in the eigenket rather than by a subscript; for example, the ket
| aab) represents a set of three atoms the first two of which are in the upper
state and the third in the lower. It is also convenient to leave the state of the
field unspecified. This information can always be included when required.

. For a‘three-atom system, there are 23 possible states, for each atom can
g be in the upper or lower level independently of the others. As for the two- -

atom system, the problem is simplest when various symmetric and antisym-
metric combinations of the single eigenkets are used. Although there is only
one set of symmetric combinations for the discrete energies, there are a
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number of possible antisymmetric combinations, The choice that Dicke made
(and one corresponding to angular momentum theory—an important rela.
tionship) is given for the three-atom system in Fig, G-3. Similarly to the two-
atom case (4), the atomic part of the three-atom interaction energy

[3>
2>— —— 20—
‘ > : (> 1 e——
i 10>
|3>= |aaa>

12>=3"Y|aab> + |aba) + |baad)
[1>=3-12|bba)y + |bab> + |abbd] -
10>= |bbb> '

125=6-112[|aab> + |aba> — 2|baad]
1°>=6"112[|bba> + |bab> — 2|abbd]
[275z=2-12 | aab) — ]abad]
[1S=2-112 | bba> — |babd]
Figurc -3, Diagram of states used for three-atom/[field system. Tke electric-dipole inter-

acfion energy can cause transitons only beliween states in the same column, that is, states
having the same number of primes.

Patom = 01 + 02 + o3 (In

can cause transitions only between states in the same colnmn (other matrix
elements vanish). In particular, the matrix element

1] Pawom 2> = 3712 bba} + {bab| + (abbl] (o1 + a2 + 03)

} x {{aabd + |abad + [baad]3-¥2

=12 x =2 - (18)
The rate at which a transition between |2 and |1 takes place is (to first

order) proportional to the square of the matrix element (18}, and hence the

atomic contribution to this rate is four—preater than the number of atoms|

At this point, we are beginning to see superradiance, for which the transi-

tion rates can initially be proportional to as much as N2, where N is the num-

ber of atoms. Conversely, the matrix element between artisymmetric states

27| #7|1"> contains an atomic contribution of unity, whose square is
less than the number of atoms.
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Constder now N atoms which are in symmetric states. As for the th;ee-atom . 3 4
case, the atomic part of the general interaction energy i o MI1||||||I;.
H b
Patom = Z gy (19) :

5o a6

causes transitions between the symmetric states, but not between these states

and those with less symmetry. 1t is possible to prepare a state vector with O W
only symmetric states by starting in the ground state |0>{all atoms in lower :
state) and applying an electric field. The combinations to be used are, then, oy 1l
as follows: - : L .
IN>=laa...ad, ; ) i
IN—1>=N"M2[aqz. .. .b>+ jaa...bad+ |ba...ad : PR
N! ' -112 : o il
S = | ——— a. ..a b...b, 20 . .
|"a> [(na!m:!):l p§m l — > ( ) . -
'3 ny ! |||| i

g
B »
b
iy
Ny

[1> = N-10]bb. . .a> + |bb. . .ab> + - + + + |ab. . .bD),
10> = lbb 5>.

These vectors are the general set correspondmg to the first column in Fig.

G-3 for the three-atom case. The number of atoms in the upper level is Na
and that in the lower level m, so t.hat the total numbcr

N=ng + Ry, 21

The summation over permutations in {20) indicates that all distinct arrange-
ments of ng atoms in the upper state and.ny atoms in the lower state are
included. The number of these states is Nf{ra! ns!).

Now consider the matrix element

(g = 1] Zatom|nad = (g — 1 |quL; ot | n3 (22)

in an extension of our discussion for three atoms [see Eq. (18) ]. The ith term
for this matrix element is zero unless the ith atom is in the upper state. There
are (N — 1)1 [ (na — 1)!np!]! such eigenkets in the symmetric combination

it
*milll“ii
i

0000000000

|na>. Corresponding to each of these is a single eigénbra with identical , m
states except for the ith atom, which is in the lower state. This eigenbra alone 0. W
has a nonzero inner product with the corresponding ei gcnket rotated by oy. : il
Hence the matnx element for the ith term | - i
' N! o NY M (N =D ] ! b
- = : . (23 :
Cra = Hoilma> = [(n., Dt n,!m,zJ [(na —Diml @ | oo
There are N terms in the perturbation energy (19), so that the matrix element ! Q g

il
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(22) is given by (23) multiplied by N. Simplifying the resulting expression,
we have

|
|
i .
| <na = 1| Fisom|ta) = [nafro + D, 29
! Now consider the state for which ng = ny = {N. The probability that
emission occurs is initially proportional to the absolute value squared of this
matrix element and hence to N'2Jq, where Jp gives the field strength. Because
ere are only N atoms, this response is termed superradiant. Semiclassically,
¢ electric field amplitude is proportional to the polarization, which for N
toms in phase is, in turn, proportional to N. Hence the intensity is initially
roportional to N2 In the fully quantum-mechanical .calculation, we have
ot explicitly referred to phase, but the choice of symmetric states implicitly
equires that the atoms radiate in phase with one another. It is this coopera-
five radiation by a group of coupled atoms which constitutes superradiance.
Because the initial decay of the atoms is greatly accelerated, the decay time
?f the coupled ensemble is correspondingly reduced.

G-3. Angular Momentum Treatment

s At this point it is helpful to note the formal identity between states of
similar symmetry [sarne column in Figs. G-2and G-3, and in Eq. (20)] and those
for a single system having a given angular momentum.t Specifically, we denote
the states in the first columa (totally symmetric states) by the ket [rm), where
the total “anguiar-momentum™-like quantum number

r=4N, - (25)
and the magnetic sublevel quantum number

m = L{ns — ny), : (26)
which takes on the ¥ + 1, 2r + 1 values, f.e. —J-N -iN+ 1. LN -,

* £N. In particular, the symmetric states for two- and three-atom systems are

rc]ated to the angular momentum states as depicted in Fig. G-4.

The antisymmetric (or less symmetric) states are given by angular momen-
tum states with less total angular momentum. The two-atom antisymmetric
state has zero angular momentum, for one “spin” points up, representing the .
state|a), and the other points down, representing|&>. Hence the m value is
also zero. Similarly the states in columns 2 and 3 of Fig..G-3 for the three-
atom case have total angular momentum 4 with 2 values
always subtracts from the sum of the other two.

Using the definitions of r (25) and m (26) along with (21) for ng and n,, we
find the relationships

1, for one spin

ng=r+m, m=r—-m 27

1See Feynman, Leighton, and Sands, The Feynman Lectures on Physics, Yol. 111, Addison-

Wesiey, 1965, Chap. 18, fora discussion of how a system with angular momentum r is
equivalent to N spin-} systems.

L4
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for the symmetric case (r = N/2). Thus the matrix element (24) connecting the
state |ngy with [ng — 1> becomes

<rom = 1 R|rmd> = 3r + m) (- — m + D=, (28)

which is precisely the result found by using the lowering operator R in
angular momentum theory.?

r=4N=1 N
m=1 - jad=|lr=1m=1 4
0 ———  27V7|ab) + |bad) = |1 O >
-l — ) =L =1 N
r=4N=3% 4
m=% ——— a3 =135 +
I o 3%[|aab) + |aba> + |bad)] = |3 5 o
% o 3-7abb) + |bab) + |bba)) = 13 —>
-t - BB = 14D qf

Figure G-4. Diagram giving relationships between symmetric states of N atoms and the
angular momentum sigtes for o single system having lotal angular momensum IN. The
additions of spins representing state (2> (Spin up) and 16y {spin down) are given,

The diagram for the complete N-atom system in angular momentum no-
menclature is given in Fig. G-5. Here the degeneracy (number of discreie
states) of the states with magnetic quantum number m znd a particular an-
gular momentum r{N/2 is given by the total number of states with 7 = r.
rainus the total number for m + 1:

N N
melny!  (na + 1) (mp — 1)

= +N1’) 7 e + 1) ~ )

Degeneracy =

Nowng =IN + m = 4N + r. Similarly, np = iN — r, 50 that the
degt:nerécy of fr,m> is

N'Qr+ 1)
GN +r+ D GN =1 (29)

For a single-atom state the intensity of spontancous radiation
tSee Dicke and- Wittke (1960}, Chap, 9.
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r=1i~N r::%N..l r=iN-2 j
nondegenerate (N — 1) fold N (N = 3) fold i
degenerate degenerate ]
m=iN —
NIy |
IN 1 '
2(N— DIy 1 (N — Dl
N -2 .
3N — Do l N — Mo (N —4)io . . .
—4N + 2
—4iN + 1
—%N > .
Figure G-5, Diagram for N-atom system in angular momentum terminology, showing
matrix elemenis between certain levels.

_ 2mo(w)g® 4
Ly = T (30) | i
according to the Weisskopf-Wigner theory. For the states having m =~ 4
= N, the intensity '

I=Io3N x 2)(3N — N + 1) = NI, IV

which would be predicted using the Weisskopf-Wigner theory. However, for
states having r = IN, m =0,

I=IiNGEN+ 1), (32)

which is coherent spontaneous emission differing dramatically from that -

- predicted by the Weisskopf-Wigner theory. ‘ |

Another phenomenon not contained in the Weisskopf-Wigner theory is ;

radiation trapping, introduced earlier in the discussion of the two-atom !
case. If there is one excited atom in a system of N atoms, then the probability
for being in the totally symmetric state 7 =4N is N -1, for there are ¥
possible such states. Thus the probability for being in a2 nonradiative state
! — NP9 ] as N — oo, that is, the radiation is trapped. It is possible to
consider this phenomenon and others using the formalism developed here.
The rcader is referred to the literaturet for further discussion.

’m 1See, for example, Bonifacio, Kim, and Scully (1969).
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G-1. Show that the dipole moment vanishes for a Dicke state [, Note

that this differs from the photon echo problem, in which there exists a ' ~ a
macroscopic dipole moment. The sitvation js analogous to the relationship -
between a number state |n> and the coherent state |a> [see Arecchi et oy . il
al. (1972)). o
- &
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THE COHERENT STATE

- Appendix H. The Coherent State

In th:s appendix we describe the coherent state of Chap. 15 by Tequiring
t.hat to be as classical as possible, the state yield minimum uncertainty for
all time (the classical fields have zero uncertdintiesj when subject to a simple
harmonic potential characteristic of the electromagnetic radiation. We find
that the corresponding probability depsity yw*y “coheres,” that is, does not
spread in time. In Sec. H-1 we derive the conditions for minimum uncertainty
(4) and (8), and then use thesz to find a simple differential equation (11) for
the wave functions. The solution is a Gaussian with an arbitrary real width
and a complex center. In Sec. H-2 we dexive the Green function, which speci-
fies the time dependence of the wave function in a simple harmonic potential
well. The width remains real (and the function of minimum uncertainty) only
if given by (A/M{2)12, In Sec. H-3 we write the wave function with this width
as a state vector expanded in terms of the photon number states. This last
expression is Glauber’s coberent state, discussed in Chap. 15.

H-1. The Minimum-Uncertainty Wave Fonction

To derive the conditions for minimum uncertainty, we dcﬁne

dig=qg—<p, dp=p—m, (n

in terms of which the uncertainty product

(d9)* (4p): = [ dav*@ 0o (@) [ doy*(@) (3 1w(q)

= [ dgGayy Gaw) [ dg Gpv)* Gpy). )
We apply the Schwartz inequality,! which reads in the notation of (2) as

410
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(49 (4p)* = | [dq Sqv)* (6py)1? = | [dgw* g Spv |, )
where equality hoids for
] Spy = iC dqy (4)

i 'for some complex constant C. The last term in (3) can be written as
| 1 [ davr sgdpyi® = | [ daw* Bog 8 — bp 39) + H(6q 6 + Sp 6q)l w ]
= !quw* ik + Hoqdp + dp dglly|*

= 1|k + [jdqw* 5q Spy + c.c]|?

b
= {42 + 3 [day* (593 + dp ST, )
; where we have used the commutation relation
(69, 57) = Ig, o] = i ®
Combining (3) and (6), we find
(49)% (4p)* = {72, )

JA - which yields the uncertainty relation (15.3).
The two coaditions for equality in (7}, that is, minimum uncertainty, are (4)
and {from (5)]

: [ daw* (39 9p + dp sq)y = 0. (8)
Substitutirg (4) into (8), we find
(€~ €% | dgv* Gy =0, OF

which can be true only if C is a real number which from (4) must have the
dimensions of a mass times a frequency. Inserting (1) into (4), we find

(P — <pDlw (9) = iClg —<gdlwdg)-
‘)ﬂ This yields the differential equation

¥ v _[=C, . (2"

; w5 ) (10)
' F where the complex dimensionless constant '
4 x = QCHYVHCLG> + i4pD). (11)

The differeatial equation {10) can be integrated with the solution

1Sec Schiff (1969). Intuitively, one may understand the result by noting that in coordinate
space the functions dp and dy¢ overlap themselves more than they overlap one another
unless (4) holds.
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w(g) = A5 exp[—3(C/A)g® + (2C/H) 2yg). (12

The normalization constant .4, is determined by the condition fdgy*y = 1,
It is convenient to define the dimensionless parameter

- (9"

for this purpose. We find

f_: dgy* (gw(g) = (%)—m -/szf_ dc’exp [—&'2 + 2(x + x*)1

(%)_m «"”w"f_ ¢’ exp{—[{' ~ +/2(x + X

+ 30 +
-1/2
()™ e ep b + 299 [ @ exp(=¢m)

-1
= (‘Ecﬁ‘) " Sreplh (o + 9

I

"

Setting this to I, we have the normalization constant

=[S epi-t i + . a4

The wave function becomes

C 1/4
wig) = (;ﬁ) exp[—+ (x + 2 exp(—£$'2 + VIxE)

Cyla _
= (ﬁ) expx® —% (x + x9)% exp[—-H(¢" — V203

Dropping the factor exp[} (x? — x*%}], whick has unit modulus, we have
Cy1 _
wig) = (2)" expBU — 1) exp (-4 — V209 (1s)

A distinguishing feature of this function is that the coefficient of g2 [see(13)]
in the exponential is C/24, a real number, for C is real because of the conditions
(4) and (8) for minimum uncertainty. We now calculate the-time develop-
ment of {I5) subject to a simple harmonic potential characterized by mass
M and frequency 2. We find that,unless C= M{2,the coefficient of g2 becomes
complex in time and hence that w (g, ¢) fails to maintain minimom uncer-
tainty for all times.

H-2. Time Devclopment of Minimum-Uncertainty Wave Packet

To find the time dependence of a wave function, we can calculate the Green

|
|
J
’
|
|
:
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function G(x, xe, 1), which is the solution of Schrodinger’s equation with the
inmittal condition

G(x, xp0, 0) = 6(x — xq). (16)

The wave function at time ¢ is then given by the superposition
w(x, 1) = _]' dxo G(x, xo, )ir(xo, 0). (17
A formal integral of the Schridinger equation for G(x, xo, t) gives the value
G(x, xo, 1) = exp(— IR 6(x"— xv), (18)

where #is the Hamiltonian with derivatives taken with respect to x. Another
convenient form for G(x, xo, t) can be derived by writing the wave function

{17y as

wix, 1) = 3 Catin(x) exp(-—inQs), (19)
where the expansion coefficients Cp are given by
Cn = [ dxo ua*(x0) y(xe,0). (20)

Identifying the coeffiicients of y(xq, 0) in the integrands of (17) and (19) with
(20), we find the bilinear form:

G(x, x0,1) = 3 un*(x0) un(x) exp(—in2t), 21

which, of course, reduces to d(x — xg)atf = Q.

In principle it is possibie to find the Green function for the simple harmonic
" oscillator by summing the series in {(21) with use of the Hermite-Gaussian
functions (1.23). It is easier however, to work with the Heisenberg picture
operators x(1) and p(r) with the definition and equation of motion

pt) = M), , (22)
p(t) = — M22x(r). (23)

Combining these, we have the equation for x{¢) alone:
)+ 22x(t)y =10 (24)

with the solution
x() = x(0) cos Q1 + p(0) (MQ2)1 sin Qr. (25)
It is convenient to take x(0) and p(0) to be ithe Schrddinger picture operators

encountered in wave mechanics (Chap, 1). Then the operator x(0) has the ei-
genvalue equation

x(0) 8(x — xp) = xo0 J(x — x0), (26)
which with (18) gives
x(—1) G(x, xo, 1) = exp (— iz tfh) x(0) exp(izzt/h)exp(—ise r/f)d(x ~ xo)
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= xoG{x, X0,1). @

This is intuitively understandable from (26) for, at some ¢, G(x, xo, 1) was,
in fact, just the delta function d(x ~ xo0). Using {25) for x(—1t), we find

[x(0) cos Qt — p(OY M) sin 2t — xg]G(x, xo,¢) =0, (28)
Since x(0) and p(0) are the Schrédinger picture operators, we find that (28)
yields the simple differential equation

—IR{MQ) 1 sin .th}G— = (xcos 2t — x)G.
This can be written as

LG _ o oy
Gar = IMS(% sin Q2¢)~2 (x cos $2t — Xo),

which has the integral

In(G/Go) = iMQ(¥ sin Q1) (4x2 cos Qr — Xpx) + constant,
that is, .

G = Gy exp [$iMQ(# sin Qt)'l (x2cos Qf — 2xpx) + constant}.

We evaluate the coastant by noting from the bilinear form (21) that, for the
(real) Hermite-Gaussian functios, G(x, Xo, ¢} is symmetricin x and xq. Hence

G = A5 exp [HIMOA sin Qo)L [(x* + x%) cos Q1 — 2xxl}.  (29)
Further using the transitivity relation

[ ax G, %19 6(¥, x0,17) = Glx, x0, £ + 17,
for ' + ¢ = 0, we find the -normalization constant:
.LMQ )1'2
U = -—-—L—-—.-_-.._
e (ﬁnlsin o (30)

For ¢ = 0, this gives 8(x — xq) as required. For 1= n/202, we obtain a plane

wave. This is truly a wave packet whose width is extraordinarily time de-
pendent! '

In the calculation for the wave function (17),
a normalized coordinate like (13):

- (@)Wx

it is convenient to introduce .

ﬁ an
<
and the ratio
C
R= 5 (€22

Tbe Green function (29) is then written as
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G(&, &0, 1) = Ag exp {Hf(sin Q)7 (€2 + B cos Q1 — 24,4]), + (33)

where the normalization constant (30) reduces 10

Ae = (2n} sin Qr| y7V2, (34)
The initial wave function (15) becomes |
W&, O) = Ay exp (—FRE® + X'¢o) (35)
where the complex displacement
= JIRx (36)

and the normalization constant
' cy 12 . Liy]? 37
Ny = nE exp(—1x “"z[l’] ). (37
The time-dependent wave function is given by
wig 1) = [ déy 6 €o ) v, 0)
= Ay N [ dEq exp{itsin Q)7 (2 + &P cos 2t — £od)
—34R$E + X'4o)- {38)

The argﬁment of the exponential can be reduced by completion of the sguare
in{,to
[} =L, icot 21 — R) + & (¢ — i&/sin 21) + $i? cot Lt

— i&fsin 0t

T - Yp — Lir2
= ~ HR — icot Qr} (éo 2(50 R icol 01 ) + +iE% cot £2f

= — (R — icot Qr) (co ..Z__-;_fg_siggr)z N 1 (7 = isin Q12

R —icott 2 R—icotft
+ LifZcot Q1. 3%
With this, the integral in (38) over &, yields the factor [2n/(R — i co1 Q)]
We have
9 1/2 Ly — iEfsin Q)2 :
v M b e =y S
I 17
—m'%(ﬂ — icot .QI)
Fx? — ix'Ef{sin Q1) — L&} — iR cot 1)
X “4P1 R —icot l (“0)

The coefficient of & in the exponent of the minimum-uncertainty wave
funetion (16) is real. That in (40) is not reai for all time unless the ratio R is
unity, that is, unless
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C= MQ. (an

Io other respeets, (40) satisfies the conditions for minimum uncertainty, and
hence the choice (41) in (40) viclds the desired wave function.

This conclusion is illustrated by the time development of the probability
density w™w for (40). Somz straightforward algebra gives

v (MR
vy =(7r7) < exp(—[E — & cos (@1t + $)]2/o2], 42)

where the displacement &, =|z'](sin? ¢ + cos? g/R?)}2, the phase ¢’ = tan=2
{Rtan ¢), ¥ = ]x'] exp(—ig), and the width .

_ (c052 £2r + Rtsin® Qt)”z
= R .

We sec that the probability density is a Gaussian wave packet whose center

exccutes simple harmonic motion and whose width (43) is, in general, variable

in time. The packet coheres, that is, has constant width only if R = i.
Thus choosing (41) in (40), we find the coherent wave function:

MOVIA
wll, 1) = (_;cﬁ_) exp(—1a? — L]a|2}exp(if2t/2) exp(iaZe~tR sin Q¢

43

+ VIagertmt — 4, (44)
with the complex displacement
a = QMR Mg + ip). (5)

Further simplifying (44) and dropping the irrelevant phase factor exp iQs/2,
we obtamn .

. M1 .
w(é 1) = (-;-cuﬁ-) exp[—£a?(l — 2isin Qrcos 2t — 2sin? Q) — 4}¢]?

— & .__'/fae—im)z + (ae—192)2]
= expli(aeif)? — | a| 2§ ~ ¥/ Z ae i), (46)
where go is the lowest-order Hermite-Gaussian function of (1.22). We see that

the coherent (£, ¢} is the same as the initial state (15) with the displacement
x given by ae—ift and the width parametar C by MQ,

H-3. Expansion in Number States

To expand the coherent wave function (46} in the Hermite-Gaussian fune-
tions (1.23) without displacement [#(£)], we note thét the Taylor serics expan-
sion for a function f(x — x,) can be written as

. J(x = x0) = f(x) = %o f1x) + X220 — » ¢ »
‘_ = exp [—xo(d/dx)] f (x)- 47
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:‘ Hence (46) can be written (for typographical simplicity we take ¢ = 0) as & My
i w($, 0) = exp[H(a® — aa*)] expl—- V2 a(d/dd)] 4,(2). (48) . i
I We can find a formula for the derivative dfd¢ in terms of the annihilation and C:’ '
; creation opcrators aand at by noting that the momentum operator is given ) i
by
|
i
! d L iMOR g ‘ ]
: = 4 12(at — = —ifi— = — jh|{—— —_— = —] .,_ 4
L p=HOMANG — ) = —ih T ;ﬁ( ; ) % = —iMrapn, D |
that is, . e 2 1y
d 1 ‘ i
Z= 73 - a (49) RIAL
_; Inserting this into (43), we obtain _ o~ i
' w(¢) = exp[3(e® — ae*)] explalat — a)]gy(¢). (50) | 3
Now the operator (see Messiah, 1961, p. 442) ‘ - o
i explalat — a)] = exp{}elat, al} exp(gat).exp(—ca). (51) -~ 0
: Furthermore, exp (— aa)¢do = go, and the wave function reduces to - '
il
w(§) = exp(—~}aa*) exp(aat)go(¢) e »
= 5% S5 exp(—Hlal9a(0), 52) o
where we have used (14.32). This wave function is the coordmate representa- - ,"“". d
tive of the coherent state: ‘
) : .IID ‘i"""i‘
: |a)= E = elp(*%lﬂﬁ)l")- ' -(53) -
s /i1 - A D
Note that, if we include the time dependence in (52) in the standard way of o ‘
Eq. (1.13), we find - - {1
_ {ae .
vie,0) = 5 [Cr L exn— 1 aimgue, 0 B
which agrees with the replacement of a by ae~i%in (52), as indicated by , PR 1
Eqgs. (46) and (48). oo
_ Finally, forming the probability density, we find & A
Mme : S ' S
vy = (—n?) exp[—~Hae— )2 — |a|? - Ha*etaty) | S { ]
x exp[—&% + 242 Re (ae4%)] .
: -~ Iy
. 12 ‘ » _
= (-f%)) exp[—2Re(ae*)%} exp {—[{ — V2 Re (ae~ 1)) il
! + 2Re (ae“‘"‘)z} o ”u""""
o

i
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=(%) " exp{~le~vZ1alcosar + g, (59

where the complex

a = |ajexp(~ig).
Here we see that the wave packet oscillates back and forth with constant

spread [A/(M)2. This conclusion follows, of course, from the more
general expression (42).

Now, using relation (14.6) between the electric field and position g, we find
the corresponding wave function:
W(£, 1) = (VZr€) 17 expl}(ae12)2 - 1| a|]

X exp{—4{(42€)"1E — V2 ez " (56)
and the probability distribution:

w(E, )*w(E, t) = (,/i:z&’j-l exp {—{(V2&)1 E — /3] ajcos(Qt+ & (57
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GENERAL QUANTUM LASER EQUATIONS

~ Apperdix I. General Quantum Laser Equations of Motion

1n this appendix we calculate the equations of motion for the reduced den-
sity matrix describing the lascr field, The calculation is similar to the atomic -
beam version in Chap. 17 but deals with atoms whose levels 2 and # decay by
: spontancous emission to lower-lying levels ¢ and d, respectively, as depicted
in Fig. I-1. This model is typical of laser behavior and parallels the semi-
classical discussinn of Chap. 8 more closeiy than it correspends to the atomic
beam approach. Inasmuch as the beam transit times are taken to have the dis-
tribution y exp{-yr), which simulates spontaneous emission, the results are
the same for equal decay constants (yz = y» = 7). A by-product of our dis-
cussion (Sec. [-2) is a derivation of the semiclassical equations of motion
(7.34){7.36) for the reduced atomic density matrix. This developrent as-

Figure I-1. Atomic level scheme for atoms. Laser action takes place between levels a
b, which decay to levels ¢ and d with decay constants ya and ys, respectively. The encrgy
Spacing between a and b is hiw. The excitation rates to levels @ and b are given by rq and r,
respecrively. In the text, we consider primarily excitation to the upper level alome (ro = 0),
The general model depicted here corresponds quite closely to the semiclassicol treatment of .
Chap. 8 and is develeped in the problems.

419
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: sumes that the field is given by a coherent staté {15.11) and that ofl-diagonal
IW corrclutions between the field and atomic coordinates can be neglected. In
; particular, this “factorization™ of the atom-field density matrix discards the

spontancous emission into the laser field itself, emission producing the major

part of the laser lingwidth (apart, of course, from mechanical vibrations).
; This role of spontancous emission is discussed intuijtively in Sec. 20-3 and
il analytically in Secs. 17-3, 18-2, and 20-3.
j
i
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I-1. Quantum Laser Equations of Motion

In the notation of Sec. 14-4, a representative state vector for the combined
atom-laser-free-field system is given by

iﬂﬂ la—(1)D = %:{[Canlﬂ)(!”a> + Conan{2)|5D]] {0}
+ DlCeantp(D)1> + Canap(H DY 1)) |1, n

where, for examiple, the probability amplitude Canin(t) is that for the upper
atomic level, an n-photon laser field, and no photons in all other modes, and

W Ceniin{t) is the amplitude for level ¢, an n-photon laser field, and one photon
in the rth mode with no photons in the remaining modes. The density operator
composed of such state vectors is given by

puiet) = Z: Polya-1-(t)> <wa—i-r(t}]

W ' = 2.2 lpanion amumlﬂ> <ol + pomior: micn} 6> B @) {0}>< (0}

nm

+ 2 [Pcnllrl; cmiip I C> <C|
¥

I + Paniigr; dmin | € <d 1} | {1g> <3 |]1"> (m|

-+ terms off atomic or free-field diagonals. (2)

Here the density matrix elements

Paniop: amioy(t) = 3 Py Canior()Caminy*(t), (3)
poawn bmns{l) == 33 Py Conioy () Comin*(2), 4)

with similar expressions for the remaining elements in (2).
We desire to find the reduced laser-ficld density matrix element ppm(t ). This
is given by the trace over atomic and free-field coordinates, that is, by

Pum(l) = Panios amii + Pbriti: bty + Pen: em + Pani ams &)
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in which the reduced matrix elements pes;em and pgn.am are defined by

Pen. em = E Penila: emilyl, (6)
r

Pdn: dm == 2 Paalyk dmilg)- )
- ‘ :

The Weisskopf-Wigner decay caleulation leading to Eq. (14.104) proceeds

' here for decay from level a to level ¢ independently of the laser interaction

between levels @ and b. Hence the equation of motion for Camwm(?) is just
the sum of the stimulated term like (14.70) and the spontaneous contribution

© of (14.104), namely,

Cuntou(f) = —395Canioi(t) ""fg'/m expli{w — w))1Co.ne1,10(t). @)
Similarly, the damped equation for Cooneta(t) is given by
Comstuar(t) = ""%}'bcb.u-il-l. 0t) — igv/n F 1 exp[—i(co — v}] Caninr{?). (9)
Use of these equations shows that the matrix elements (3) and (4) decay to
zero in times 1/y¢ and 1/ys, respectively. Hence, for an atom excited at time f,

the field matrix element (5) at time ¢ + tfor T greater than the atomic life-
times reduces to

pnm(f + T) = Por; cm(f + T) + Pdn; dm.([ -+ T). (lO)

We can derive the equations of motion for these reduced clemcnts (6)
and (7) along the lines of the Weisskopf-Wigner thcory -of Sec. 14-4. Spe-
cifically, from {6) and the lower-level equation (14.98), we find

Pcn: em(t) = E P, }: Ccnll,-iccmﬂ,-) + c.c
v r
“= —i X Py 2 grexpli(@, — @)t] CaninC emup® + c.c.
¥ T

= '—iZ‘,g.— cxp[f(.Qr -_ ﬂ))f] Pant); cm(llr!)+ c.c. (] 1) .

In turn, from (14.97) and {14.98), we find
Pantor: emi1y = h P,,{—f 2 CXP[-i(Qs — Wt ]Ceni1y Comup*
Ly £ .

+ fgr cxp[—f(Qr - w)t] Caﬂ(ﬂlcﬂ-ﬂ'IIOI*]
= igrexp[—i($2y — W)I]Panlm: om0, (12)
Here the approximation follows since |Cemug|? € 1. A formal integral
of (12) gives
! 1]
Panior; emiap(t) = igr exp[—i(2, — w)t]fn di” exp[—i{Qr — )t — )]

X Panto: amtOl(f')

Combining this with (11), we find
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L - .
Py Bemenlt) = D152 [’ expl—i(@e = ) (t — Ypanor emo(t) + c..
‘. ~||||]]} a.‘ T
L6 | (&)
! al,” ad This is the same kind of integral as (14.99), here including a complex con-
‘||| :D : ‘ Jugate and a sign change. Solving it as for {14.99) and using y. to indicate
y explicitly decay from level g, we have
[ .
o - o - Pea: emll) = YaPanion; aminkl). (14)
‘l.w e - Similary, pan: em(?) has the equation of motion
e “ Pan; am(t) = Yopomior; smti(t). (15
[ m:} These equations are plausible, for they say that the total spontancous emis-
i W sion from |a) (or |6)), regardless of wavelength, leaves the atom in state >
| : {or|d>). The laser field plays a negligible role in this process since its fre-
"‘ i, . quency is far from resonance. With the use of (14) and (15), Eq. (10) can be
||| N ‘D . written as :
/ m""' ’ ) T
: ™ pam(t + 1) ":jl; a4 [yapanion: amin(t + ) + Yopemon; smig(f + 1))
2 | (o
l ‘W'D Thus our problem reduces to finding Pantti: amiar a0d  pppioy; pmioy  aS
LI _ functions of time. We obtain them using the element definitions (3) and (4)
A with the equatigns of motion (8) and (9).
M i . ] e . ) -
(. Suppose thaian atom is excited to the upper state |a> at time s, Then an
i D atom-laser-frec field state vector (1) factors as
I, v
S fraadt)y = || 0] D), : (17)
- - where |(r)> is a representative field state vector (see Sec. 17-1). With ref-
[ - erence to E¥, (1), we sec that Can(t) = Cr(t) and the other initjal probability
Iy -~ amplitudes vanish. According to the equations of motion (B)and (9), Co,ns1.00
|m . couples with Conw in time. Analogously to Eqs. (17.7) and (17.8) we write
. PR .
(| m | Cona! + 1) = Calt)&anlt + 1), (18)
i~ i
’% i 4 ; Coarpiof + 7) = Calt)& bynsat + ™), (19)
| e in which the amplitudes #2,(t) and % ,5+1(2) are solutions of (8) and (9),
"« g7 - respectively,
1 ! B In terms of the €'s, the density matrix elements of (3)and (4) are written as
LT : ,
i ’"""b__p : Panwos: amol! + ) = prm(t) Faalt + 1) Fam*(t + 1), (20)
|m ] Pbuii; bmii(? + ) = pnty (1) Fonll + ) Fom™it + 7). 2D
Ul " D) Thus Eq. (10) for pam (r + 1) reduces to
| -
i - Pamll + 1) = pam(t) f A’ Yo Fanlt + T) Cam™(t + 7
’Tﬂ
‘« WHH" _;‘
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+ pn-r.,m-l(I)J;-dt' 1T oalt + T)Eom*t + 7). (22)

Here we have extznded the Limit of integration tooo(as in the semiclassical
theory) for mathematical convenience. The coarse-grained time rate of change
of pam is then given by the rate 7, of excitation toja> multiplied by the change
induced by a single atom. that is,

ﬁﬂm‘(r) = ra[Pum(f + T) - pnm(l)] ,
L= —pm(r)r..[l -- .J: a7’ yu ??a,;(_f;+ ) Eem*(t + r’)]

+ patma(t)ra J; & Yo B onlt + T)Fom* (1 + T). (23)

Note that this is a generalization of Eq. (17.9), in which y, can be different
from yp. Furthermore we have established that Eq.(17.9) does, in fact, account
properly for spontaneous emission.

The integrals in this equation have a particularly simple meaning. Censider, .

for example, the integral for the upper level. Schematically it reads
_rdt ¥a X {Probability that atom is in [&)> at time ¢ 4 17 in presence of nm-
Q

photon ficld)
= total probability of spontaneous emission from a o ¢in this field
= probability that am field does nor stimulate atonr¥o emit.

Similarly, the & integral is the probability of stimulated emission by an n — I,
m — | = photon field. Thus we can write the coarse-grained equation of mo-
tion (23) in the schematic form:

rs
Prml(t) = — pan(t) % (rate ol atomic excitation to upper level)
x (probability of é.iimulated emission by an am-photon field)
+ pn-1,m-1(t) x (rate of atomic excitation to la)
X (probability of stimulated emission by an (n — 1, m — 1)
photen field).

In particular, the equation of motion for the diagonal element ppp, the proba-
bility of » photons, has the intuitively reasonable interpretation

Ana(t) = —(probabdility of n photons) x (rate of excitation to {a>)
X (probability of stimulated emission by n-photon field)
+ (prdbability of n— 1 photons) X (rate of excitation 10 [a})
% (probability of stimulaied emission by (1 — 1)-photon field).

(24)
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This result is reminiscent of the first Fokker-Planck development in Sec. 16-3.
In view of the decomposition (18) and (19), the s have the equations of

motion (8) and (9).The solutions are particularly simple for the case of equal

‘ decay constants (y; = yp = y) 2nd resonance (v = w), for which Eq. {23)

i reduces to (17.9). More general solutions are discussed in Prob. 17-15.

‘ I-2. Reduction to the Semiclassical Theory

““ tion (7.34)7.36) for the electric-dipole perturbation energy. We suppose that

the field is described by a coherent state (15.11) inasmuch as this yields the

‘ most nearly classical field. The essential approximation we make is that the

atomic coordinates are nncorrelated with those of the field, that is, the atom-
m field density matrix factors as

In this section we derive the semiclassical density matrix equations of mo-

‘ “““ P.I-—I(I) = Pa.tom(f) @ Ptield(f)- . (25)
The reader will recall that initially the combined matrix does factor, but that

“m correlations develop in time represented by the joint probability amplitudes
Can and C pny1. The factorization (25) leads to a zero lirewidth instead of

e (17.44), since the off-diagonal field elements pam no longer decay.

5 From the probability amplitzde equations of motion (8) and (9), we fiad

,dan.: an = —%YaPanian ™ {!an 41 exp [I((.L) - “)f]Pb,uH: an + C.C.}, (26)

ﬁon; or = —YbpPon;bn + {igJH exp [f(GJ — )] Pon;ayn—1 + C-C-} » (27)
pan: bn = —VYabfan: bn — ig exp[i(w —”)t] [‘v”ﬂ + I Ponyl: bln
|m - w[f_i‘ Par; a,n—I]- (28)

The atom-only equations of motion are given by the trace over the combiaed
matrix, that is, by paiom{t) = Triie1apa-i{t). Therefore the component equa-
tions of motion for patem(t) are given by the field trace over (26)-(28). To
perform these traces, we factor the density matrix, giving

Posatlian = PoaPr+l,n, Lo+l bn = PbPn+15n,
Pan: ayn—1 = Paaln,n—1. . (29)
The matrix element pgy1,- for a coherent state p = |a> {a| is given from

(I5. ll) as
an+l (ﬂ')ﬂ
n4lsn — 30
| Preon = T Jal Jn o 4 G0
Hence the field trace over (26} gives

‘ ﬁau = Z‘.ﬁau: an — —YaPaa = }fg 2 CXP[f(ED - V))t'v‘?’l + 1 pPrapasin + C.C.]
. R 7

| = ~yopaa = [ig XDl(@ — )] a2 VAT T 7= pon + G
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= —Yapas — {iga explil — v)Jpoa + c.c]. ) o5 ¥

Here, from (14.60), ga = ~(¢%a/f)sin Kz, 0 that (31) is just the expression ) '

| (7.34) with the interaction enetgy F4p = —¢¥ asin Kz as desired. A :

} Sé?)u:;;ag;;anon yields electric-dipole versions for (7.35) and (7.36) from >y i
b
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cascade transitions, 142
cavity, 60, 97, 361
anisotropy, 181

A coefficient, 21
absorption, 18, 258
absorption cell, 155

adjoint, 69, 70 ' Q, 62,112
AM locking, 132 >/ centra! tuning dip, 152
ammonia beam maser, 55 charge-spring model, 30

charge-spring oscillator, 36

ammonia molecule, 56
- circular polarization, 18!

1 ampilifier theory, 198
| amplitude determing equations, 119, classical current, 249 o
i 10] classical dipole oscillator, 34
angular momentum, 182, 406 clock oscillation, 52
angular momentum sum rules, 398 coarse-grained time rate of change,

anharmonic osciflators, 41 259 L
annihilation operator, 224 coherent state, 410 242
area theorem, 206 completeness, 247
atom-field interaction, 14, 230 equation of motion, 267
atomic beam reservoir, 258 number state expansion, 246

collective spontaneous emission, 400
collision broadening, 84

B coefficient, 20 combination tones, 127
Beer’s law, 204, 207 competition phenomena, §J
Bessel ideatity, 139 completeness, 4, 68, 72
bistable operation, 51 complex polarization, 103
blackbody radiation, Zd/ : conductivity, 98
Bloch equations, 914 conductivity matrix, 184
Boltzmann distribution, 22 confocal resonators, 364
bowling ball analogy, 209 conservation of energy, 101,
bra vector, 68 coupling constant, {23
Brewster window, 97 gas laser, 159
Brownian motiop, 31} ring laser, 177

buildup of radiation, 109, 291 . Zeeman laser, 190
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A caefficient, 21
absorption, 18, 258
absorption cell, 155
adjoint, 69, 70 .
AM locking, 132
ammonia beam mase}f?:
ammonia molecule, 56
amplifier theory, 198

amplitude determing equations, 119,

101
angular momentum, 182, 406
angular momentum sum rules, 398
anharmonic oscillators, 41
annihilation operator, 224
area theorem, 206
atom-field interaction, 14, 230
atomic beam reservoir, 258

B coefficient, 20

- Beer's law, 204, 207
Bessel identity, 139
bistable operation, 51
blackbody radiation, 2&/
Bloch equations, 91+
Boltzmann distribution, 22
bowlirig ball analogy, 209
bra vector, 68
Brewster window, 97
Brownian motion, 311
buildup of radiation, 109, 291
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cascade transitions, 142
cavity, 60, 97, 361

anisotropy, 181

Q, 62,112
ceotral tuning dip, 152
charge-spring model, 30
charge-spring oscillator, 36
circular polarization, 181
clagsical current, 249
classical dipole oscillator, 34
clock oscillation, 52
coarse-grained time rate of change,

259
coherent state, 410, 242

completeness, 247

equation of motion, 267

number state expansion, 246
collective spontanecus emission, 400
collision broadening, 84 "
combination tones, 127
competition phenomena, 51
completeness, 4, 68, 72
complex polarization, 103
conductivity, 98
conductivity matrix, 184
confocal resonators, 364
conservation of energy, 101
coupling constant, 123

gas laser, 159

ring laser, 177

Zeeman laser, 190
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creation operator, 224
cross-coupling, 49
cross-saturation, 120, 159

damped harmonic oscillator, 315

damping, 23
atomic beam, 258
fictional conductivity, 100
decay phenomena, 23, 84

decoupled approximation, 130

density matrix, 79

equations of motion, 84, 85

many level, 84
mixed case, 82
perturbation theory, 89
pur_é‘ case, 80
two level, 80
vector model, 91
deosity of final states, 238
densily operator, 239, 265
expansions, 251
Josephson junction, 354
reduced, 257
thermal radiation, 252
detailed balancing, 263
difiraction losses, 362
diffusion, 271
diffusion coefficients, 319
dimensionless intensity, 106
dipole decay, 86
dipole moment, 3, 81
dipoic sheet, 358
Dirac delta function, 4
Dirac notation, 67
Doppier broadening, 144
Doppler effect, 89

Doppler limit, 15t

Doppler width-Ku, 145
double tank circuit, 48
drift,. 271

drift coeflicients, 319
Dufting problem, 4t
dyad, 68

INDEX

energy density, 19

eigenfunctions, 4

eigenvalues, 4

eigenvectors, 71

Einstein A and B theory, Y

Einstein relation, 318
generalized, 324

clastic collisions, 85

clectric dipole
approximation, 15 v
interaction energy, 186, 104, 23]
matrix elements, 186
moment, 59
perturbation energy, 15, 17
quantum, 31

electric field, 99, 246

eleetric field “per photon™, 225
operator, 224
polarization, 181
vector, 181

cnergy levels
one dimensional well, 5
simnle harmonic oscillator, 7
hydrogen atom, 9
two-level medium, 102
two-level system, 12, 16, 24

excitation, 101

expander, 140

expectation value, 3, 83, 71, 252

eycball integration, 57

far-field radiation, 34

ferromagnet, 348

fluctuation-dissipation theorem, 315

FM locking, 132, 138

Fokker-Planck equation, 268, 269, 312
laser, 287, 348

forced locking, 136

four level maser, 102.

Fox and Li modes, 98, 316!

free-running operation, 133

frequency determining educations,
119, 101

frequency locking, 127, 134, 52
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gain
ammonia beam maser, 61
laser, 101, 107
pulse propagation, 203
saturation of, 46, 10]
Yan der Pol oscillater, 46
gas laser theory, 144
Gaussian
beam, 112, 369
distribution, 43
function, 210
statistics, §6
Green's funciion, 413

halfwidth, 36
Hamiltonian, 4
harmenic oscillator, 6, 224
Heisenberg picture, 75, 310v"
Helsenberg uncertainty principle, 242,
245, 410
Hermite polypomials, 7, 227
Hermitian operator, 70
Hermaticity, 70, 72
hole buming, 147
spatial, 105
homogeneous broadening, 88
hydrogen atom, 7
hyperbolic secant, 211
hysteresis, §1

identity operator, 68
impact of laser, 341
index of refraction, 101, 110
induced emission

(see stimulated emission)
inhomogeneous broadening, 88
injected signal, 128, 53
intensity, 106

buildup, 109

dimensionless, 106

pulse, 204 ~
interaction picture, 75
inverse dip, 155

Johnson noise, 315
Josephson radiztion, 352

Ket vector, 68

" KirchhoR-Huygen principle, 362

Kroneker delta function, 4

‘Lamb dip, 152

Lamb dip spectroscopy, 154
Langevin equation
Brownian motion, 311
laser, 332
quantum, 320
Langevin theory of laser, 327
Larmor power formula, 35
LASER, 30
laser
cavity, 361
linewidth, 292, 303, 135
-phase transition analogy, 348
photon statistics, 287
quantum theory, 281
quasimodes, 343
semiclassical theory, 96
Langevin theory, 335
lifetimes, 23
line broadening, 88, 236%
Doppier, 144
homogeneous, 88
inhomogeneous, 88
power, 26, 106
linewidth
homogeneous, 88
inhomgeneous, 88
laser, 292, 303
locking, 52, 127
laser quasimodes, 343
Zeeman [aser, 192
longitudinal decay time, 92
Lorentzian distribution, 43
dimensionless form, 105
graph of, 210
losses
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T e atomic beam, 258
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" . o fictional conductivity, 100
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ll'“’ : magnetic tuning dip, 192
o (D many atom-fieid systemn, 403
‘ Markoflf approximation, 86, 312
; it o~ 1 maser, 55
‘ oo matrix representation, 69
[ - Maxwell’s equations, 98
‘ L ' Maxwell-Boltzmann distribuiion, 145
’ e mean-square deviation, 71
L R I measurement theory, 299
] TR measurement, 71
N " o) ; minimum uncertainty wave funct:on
,_ 410
) " - | mixed states, 82
0o -, mode competition, 120, 46
|I il o~ mode inhibition, 1l2/2
“_‘ v mode locking, 127
": . ' clocks, 52
” r:‘, forced, 136
‘i phase transmon analogy, 351
" ”l' quasimpde, 343
i ' f';‘ ’ ring laser, 178
W Y three mode, 127
l| il W tuning forks, 52
I r Van der Pol osciflator, 53
I

modes, 99, 343, 361V
modulation depth, 139
momentum, 4

multilevel systems, 181, 185
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observables, 2, 70
one~dirensional well, 5
Onsager regression hypothesis, 306
open systems, 239, 257

the laser, 294
operators, 69
orthogonal, 68
orthonormal, 4, 68
oscillating dipole, 33, 35
oscillation condition, 61, 101
outer product, 69

P representation, 243
passive cavity modes, 361
Fauli spin matrices, 11
perturbation theory, 17, 89
Bas laser, 376
Zeeman laser, 388
perturbation tree, 157
phase
electric field, 99
fluctuations, 336
transitions, 348
phasors, 132
pholoeiclectron statistics, 301
photon concept, 222
photon echo, 216, 400
photon statistics
buildup from noise, 291
damped field, 262
laser, 285, 287
photons, 227
Planck radiation formula, 20
plane parallel reasonators, 364
plasma dispersion function, 151, 168,
372
polarization of electric field, 181
polarization of mediam, 101, 116
multilevel, 185
pulse propagation, 200
population difference, 105 ’
pulse propagation, 200
spatial holes, 105
strong signal gas laser, 163
velocity holes, 150
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i papulation inversion, 55 pulse propagation, 203

: population matrix, 103 reduced density operator, 240, 257

equation of motion, 103, 147 atomic beam, 258

‘ population pulsations, 127, 115, 120, density operator approach, 257

i 155. zeneralized, 273

! position states, 72 noise operator method, 310

. power broadening, 26, 106 simple harmonic oscillator, 276
Poynting vector, 35 relative excitation, 107

i probability amplitudes, 14 - relative phase angles, 118

. probability deunsity, 2 relaxation oscillations, 48

i probability of stimulated emission, 24 resolving power, 112

' pulling, 100,110 resonant transitions, 16
pulsations, 50 resonator theory, 361

4 pulse area, 206 ring laser, 172

' pulse compression, 213  unidirectional, 97, 178

' pulse delay, 213 rotating frame-merry go round, 93

! pulse energy, 204 rotating wave approximation, 1
pulse propagation, 193 ruby )
pump depletion, 111 broadening phenomena, 36
pumping, 101 laser rate equations, 111

pure-case density matrix, 80
pushing, 107

saturable absorber, 112, 140
saturation, 47, 107

Q, 62 saturation parameter, 105
guantumn theory of .{ Schrodinger equation, 14, 3, 71
atom-field interaction, 230 . Schrédinger picture, 7
i damping, 258 Schrédinger wave equation, 74
laser, 281, 327, 419 Schwartz inequality, 140
radiatiop, 222 self saturation
quasimodes, 361 coeflicient, 107, 153 /
sclf-consistency equations, 100, 1{34.
. 200
i Rabi flopping, 25, 62, 236 self-induced transparercy, 209"
quantum theory, 233 self-locking, 120
racetrack anaiogy, 218 ' self-saturation, 47, 107, 120, 154
, radiation self adjoint, 70 : o .
: accelerating charge, 34 semiclassical approximation, 424
dipole sheet, 40, 358 semiclassical laser theory, 96
radiative broadening simple harmonic oscillator, 6, 224
(see spontanecus emission) similarity transformation, 1._8/5-
Raman effect, 50, 115V single-mode operation, 107
rate constant, 104, 149 S slipping phenomenon, 130, 52
rate equation appreximation, 2C3 slowly-varying amplitude approximat/
rate equations, 104 tion, 47
Einstein theory, 21 small vibrations analysis, 122
gas laser, 149 . soft springs, 41
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spatial hole burning, 105, 114
spectrum anakyzer, 303
spin, 9 .
spontaneous emission, 23, 16, 227,

234, 236
stability analysis, 122, 134, 51
stability matrix, 123
stabilization factor, 110
standing-wave laser, 97
state vector, 2, 66, 71
Stern-Gerlach experiment, 10
stimulated emission, 21, 30, 234
strong coupling, 125

gas laser, 382, 162

Rabi lopping, 25

rate equation, 104
superconductivity, 348
superposition principle, 4
superradiance, 400
susceptibility, 100
sustained oscillators, 45
SVEA, 198
symmetric tuning, 159

T, 92

T2, 92

thermal averages, 276

thermal radiation, 83
third-order perturbation theory, 376
three-level systems, 142, 187
three-mode operation, 127, 160
threshoid cendition, 107

tic locking, 52

transient laser response, 109, 291
transverse decay time, 92
transverse mode locking, 141

INDEX

transverse modes, 361

triode oscillator, 46

luning curves, 109

tuning fork oscillation, 52

two-level system, 16, 59, 74, 233
validity of, [95

two-mode aperation, 120, 158, 48

U matrix, 78

uncertainty principle, 242, 245, 410
unidirectional ring laser, 97
unstable resonators, 369

vacuum fAuctuations, 227
Van der Pol oscillator, 46

vector ficld, 181

vector model, 91
vector potential, 15, 250

wave equation, 98

wave function, 2, 4, 72, 242

wave mechanics, 1 : .i
weak coupling, 125 |
Weisskopl-Wigner theory, 236, 277 |
Wien law, 22

x-y Q anisotropy, 185, 192

Zeeman laser, 181, 388 -t
Zeeman splitting, 182

zero-order population difference, 116
zero-point fluctuations, 227
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